Heavy Quark Production at HERA

lan C. Brock University of Bonn

On behalf of the H1 and ZEUS Collaborations

24th June 2008

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Outline

- Introduction
- Charm via D*
- Beauty via semileptonic decays to µ
- Charm and Beauty via semileptonic decays to e
- Beauty correlations
- **F**₂^{bb}, **F**₂^{cc}
- Conclusions & Outlook

- Boson-gluon fusion (BGF) is main production mechanism
- Concentrate on studies of production mechanism:
 - Test QCD (different hard scales, m_Q, p_T, Q²)
 - Gluon Parton Density Function?

Heavy Flavour Production at HERA Ian C. Brock

e(k)

- HERA (ep):
 - p: 920 (820) GeV
 - e: 27.5 GeV
- $Q^2 = -q^2 = (k-k')^2$
- Q² < 1 GeV²
 - Photoproduction
- Q² > 1 GeV²

DIS

e(K

Heavy Flavour Decay

- Methods to tag HF:
 - Reconstruct D* (or other D mesons)
 - Tag semileptonic decay to e, µ
 - Use long B,D hadron lifetime
 - Jet properites
- Different tags probe different kinematic regions

The Theory

- QCD Leading Order + Parton Shower Monte Carlos
- PYTHIA, RAPGAP, HERWIG, CASCADE
 - Massless & massive matrix elements for charm
 - Massive for beauty
 - Used for acceptance corrections

QCD NLO programs

- Weighted events
- Do not include parton shower
- FMNR for Photoproduction
- HVQDIS for DIS
- Usually compare with experiment by applying hadronic corrections from LO Monte Carlo

Luminosity & Detectors

Heavy Flavour Production at HERA Ian C. Brock

- Two recent H1 analyses using new Fast Track Trigger
 - Photoproduction
 - 93 pb⁻¹ (2006/7)
 - DIS at low Q²
 - 247 pb⁻¹ (2004-7)

 Earlier ZEUS measurements include very low Q²

ZEUS

 Single function to describe γp crosssection over full Q² range

Heavy Flavour Production at HERA Ian C. Brock

 DIS: Q² > 5 GeV²

$$D^{*-} \rightarrow \overline{D}^0 \pi^- \rightarrow K^+ \pi^- \pi^-$$

Heavy Flavour Production at HERA Ian C. Brock

- Cross-section as a function of
 - Q²
 - P_T, η of D*
 - Photoproduction:
 - W (yp CM energy)
 - DIS
 - y (inelasticity)
- Compared to MC and NLO predictions

Charm in DIS

Compare with MC

Compare with NLO

Heavy Flavour Production at HERA Ian C. Brock

Charm in Photoproduction

Compare with MC

Compare with NLO

Significant changes for different MCs Pythia with massless charm agrees very well with data

Data overshoot prediction at large η

Beauty in Photoproduction

- HERA II data
 - 124 pb⁻¹ (2005)
- Photoproduction
- Dijet events
 - P_T^{jet} > 7(6) GeV
- Semileptonic decays to muons (p_τ^μ > 2.5 GeV)
- Include lifetime information

Beauty in Photoproduction

Heavy Flavour Production at HERA Ian C. Brock

Beauty in Photoproduction

HERA I and HERA II cross-sections

Heavy Flavour Production at HERA Ian C. Brock

- HERA I data
 - 120 pb⁻¹ (1996-2000) Bkg
- Dijet photoproduction events
- E_T^{jet} > 7(6) GeV
 Semileptonic decays to
- electrons ($p_T^e > 0.9 \text{ GeV}$)
- Look for more variables to determine b and c quark fractions separately
 Interview of the set of

Heavy Flavour Production at HERA Ian C. Brock

 Use a likelihood ratio method to separate b,c and light flavour

ZEUS

ZEUS o^{vis} (pb) ZEUS 120 pb⁻¹ $b \rightarrow e X$ $c \rightarrow e X$ NLO QCD PYTHIA 10² 310 300 320 \sqrt{s} (GeV)

Heavy Flavour Production at HERA Ian C. Brock

- LO Monte Carlo scale factors:
 - b x 1.75
 - c x 1.28

 NLO absolute predictions

Heavy Flavour Production at HERA Ian C. Brock

bb Production

- Double tag events
 - Low background ©
 - Larger kinematic range ③
 - Low statistics ②
- E_T > 8 GeV
- Two identified muons
- PhP + DIS
- Measure bb correlations
 - Probe NLO effects

bb Production

- Δφ between muons from different quarks
- Correlations reasonably well described

Summary of b Photoproduction

HERA

No sign of large excess seen in first b production measurements

Heavy Flavour Production at HERA Ian C. Brock

- HERA II data
- 54 pb⁻¹ (2006)
- DIS
 - Q² > 12 GeV²
- Use lifetime information

Heavy Flavour Production at HERA Ian C. Brock

universitätbonn

Heavy Flavour Production at HERA Ian C. Brock

- Split data into Q² x (Bjorken) bins
- Extract F₂ from reduced cross-sections:

$$\tilde{\sigma}^{c\bar{c}}(x,Q^2) = F_2^{c\bar{c}} - \frac{y^2}{(1+(1-y)^2)} F_L^{c\bar{c}}$$

 Combine HERA I & HERA II measurements

Heavy Flavour Production at HERA Ian C. Brock

Conclusions

- Small selection of HERA heavy flavour measurements presented:
 - D* production
 - Beauty production via semileptonic dcays to e,µ
 - Double µ tags
 - **F**^{cc}₂, **F**^{bb}₂
- General agreement with NLO QCD predictions
- LO Monte Carlos usually describe shape well
- Data often overshoot predictions in forward direction

MC@NLO

for HERA?

Outlook

- Several HERA I measurements still to be published
- Expand kinematic region:
 - Double tags
 - Semileptonic decays to electrons
 - Lifetime tags
 - Combine tags
- Go forward! (sensitivity to gluon PDF)
 - Use improved HERA II forward tracking
- Many results with complete HERA II dataset still to come

Backup

Heavy Flavour Production at HERA Ian C. Brock

dE/dx in ZEUS

Heavy Flavour Production at HERA Ian C. Brock

universitätbonn

Ian C. Brock

b & c in Photoproduction

 LO Monte Carlo scale factors:

- b x 1.75
- c x 1.28

 NLO absolute predictions

Heavy Flavour Production at HERA Ian C. Brock

bb Production

- Split into different charge combinations
- Also use µµ invariant mass to separate signal and background
- Most of background can be estimated from the data

 Significance (1 track events)

Significance (2nd highest significance track)

Reject events when S_1 and S_2 have opposite sign

Heavy Flavour Production at HERA Ian C. Brock

Subtracted significance distributions

Heavy Flavour Production at HERA Ian C. Brock

Reduced Cross-Section

$$\tilde{\sigma}^{c\bar{c}}(x,Q^{2}) = \frac{d^{2}\sigma^{c\bar{c}}}{dx\,dQ^{2}} \frac{xQ^{4}}{2\pi\alpha^{2}(1+(1-y)^{2})}$$

$$\tilde{\sigma}^{c\bar{c}}(x,Q^{2}) = \tilde{\sigma}(x,Q^{2}) \frac{P_{c}N_{c}^{MCgen}}{P_{c}N_{c}^{MCgen} + P_{b}N_{b}^{MCgen} + P_{LF}N_{LF}^{MCgen}}$$

$$\tilde{\sigma}^{c\bar{c}}(x,Q^2) = F_2^{c\bar{c}} - \frac{y^2}{(1+(1-y)^2)} F_L^{c\bar{c}}$$

Heavy Flavour Production at HERA Ian C. Brock