B and D mesons on the lattice

Elvira Gámiz

High Energy Physics
Illinois

BEACH 2008

· University of South Carolina, 27 June 2008 ·
Outline

1. Introduction: Lattice QCD

2. Decay constants: $P \to l\nu$
 - f_D and f_{D_s}: test of lattice QCD
 - f_B and f_{B_s}

3. Semileptonic decays
 - Exclusive $B \to D^*l\nu$: determination of $|V_{cb}|$
 - $B \to \pi l\nu$: determination of $|V_{ub}|$

4. $B^0 - \bar{B}^0$ mixing: $\Delta M_{d,s}$, $\Delta \Gamma_{d,s}$ and ξ

5. Conclusions and outlook
1. Introduction: Lattice QCD

Lattice QCD is a quantitative non-perturbative formulation of QCD based only on first principles.

It provides a quantitative calculation tool, becoming a precise tool.
1. Introduction: Lattice QCD

Lattice QCD is a quantitative non-perturbative formulation of QCD based only on first principles.

It provides a quantitative calculation tool → becoming a *precise tool*

Precise lattice calculations: for stable (or almost stable) hadrons, masses and amplitudes with no more then one initial (final) state hadron.

* Quantities relevant for all CKM matrix elements except V_{tb}.

\[
\text{experiment} = (\text{CKM})^*(\text{lattice inputs})
\]

Lattice inputs: Encoding non-perturbative information on hadrons

(decay constants, form factors, bag parameters, etc)
1. **Introduction: Lattice QCD**

Lattice QCD is a quantitative non-perturbative formulation of QCD based only on first principles.

It provides a quantitative calculation tool → becoming a **precise tool**

Precise lattice calculations: for stable (or almost stable) hadrons, masses and amplitudes with no more then one initial (final) state hadron.

* Quantities relevant for all CKM matrix elements except V_{tb}.

\[
\text{experiment} = (\text{CKM})^* (\text{lattice inputs})
\]

Lattice inputs: Encoding non-perturbative information on hadrons

(\text{decay constants, form factors, bag parameters, etc})

* Generate sets of gluon fields contribute most to the Path Integral (configurations).

* Calculate averaged hadron correlators on these sets
1. **Introduction: Lattice QCD**

Lattice QCD is a quantitative non-perturbative formulation of QCD based only on first principles.

It provides a quantitative calculation tool → becoming a **precise tool**

Precise lattice calculations: for stable (or almost stable) hadrons, masses and amplitudes with no more then one initial (final) state hadron.

* Quantities relevant for all CKM matrix elements except V_{tb}.

experiment = (CKM)*(lattice inputs)

Lattice inputs: Encoding non-perturbative information on hadrons

(decay constants, form factors, bag parameters, etc)

* Generate sets of gluon fields contribute most to the Path Integral (configurations).

* Calculate averaged hadron correlators on these sets

Goal: **control systematic errors**
Quenched approximation: neglect vacuum polarization effects → uncontrolled and irreducible errors

Unquenched work with $N_f = 2 + 1$ flavours of sea quarks
Quenched approximation: neglect vacuum polarization effects

→ uncontrolled and irreducible errors

Unquenched work with \(N_f = 2 + 1 \) flavours of sea quarks

\[N_f = 2 \text{ and } N_f = 2 + 1 \] ensembles available

\(m_l > m_{u,d} \) in numerical simulations
Quenched approximation: neglect vacuum polarization effects → uncontrolled and irreducible errors

Unquenched work with $N_f = 2 + 1$ flavours of sea quarks

$N_f = 2$ and $N_f = 2 + 1$ ensembles available

$m_l > m_{u,d}$ in numerical simulations

Use chiral perturbation theory to extrapolate to $m_{u,d}$
Testing Lattice QCD

$N_f = 0$

- f_π
- f_K
- m_Ω
- m_N
- m_{D_s}
- m_D
- $m_{D_s}^* - m_{D_s}$
- $m_\psi - m_{\eta_c}$
- $\psi(1P-1S)$
- $2m_{B_{s,av}} - m_\Upsilon$
- m_{B_c}
- $\Upsilon(3S-1S)$
- $\Upsilon(2P-1S)$
- $\Upsilon(1P-1S)$
- $\Upsilon(1D-1S)$

$N_f = 2 + 1$

- $m^l_{D_s}$ = 1.962(6)
- $m^e_{D_s}$ = 1.968
- m^l_{D} = 1.868(7)
- m^e_{D} = 1.868

Experimental quantities are quite well reproduced by lattice
when including realistic sea quark effects
Purely leptonic decays can be used to extract CKM matrix elements

\[\Gamma(P_{ab} \rightarrow l\nu) \propto f_P^2 |V_{ab}|^2 \]

or testing SM/lattice predictions
f_D and f_{D_s}: test of lattice QCD

\[B(D_q \rightarrow l\nu) \propto |V_{cq}|^2 \cdot f_{D_q}^2 \]

experiment lattice

Simple matrix element

\[\langle 0 | \bar{q} \gamma_\mu \gamma_5 c | D_q(p) \rangle = i f_{D_q} p_\mu \rightarrow \text{precise calculations} \]
f_D and f_{D_s}: test of lattice QCD

$$B(D_q \to l\nu) \propto |V_{cq}|^2 f_{D_q}^2$$

- Simple matrix element $\langle 0|\bar{q}\gamma_\mu\gamma_5 c|D_q(p)\rangle = i f_{D_q} p_\mu \rightarrow$ precise calculations
- Results from two groups with $N_f = 2 + 1$
 - Heavy valence quarks HPQCD, HISQ, FNAL/MILC Fermilab action

- Highly improved staggered quarks (HISQ): Reduction of $O(a^2 \alpha_s)$ and $O((am_Q)^4)$ discretization errors \rightarrow Very precise results for charm physics, charmonium and D, (m_c fixed by η_c). E. Follana et al (2007)
f_D and f_{D_s}: test of lattice QCD

$B(D_q \to l\nu) \propto |V_{cq}|^2 f_{D_q}^2$

experiment \hspace{1cm} lattice

Simple matrix element $\langle 0 | \bar{q} \gamma_\mu \gamma_5 c | D_q(p) \rangle = i f_{D_q} p_\mu \to$ precise calculations

Results from two groups with $N_f = 2 + 1$

- Heavy valence quarks \textbf{HPQCD} \hspace{3mm} \textbf{HISQ} \hspace{3mm} \textbf{FNAL/MILC} \hspace{3mm} \textbf{Fermilab action}

- \textbf{MILC} ensembles: 3 lattice spacings (0.09 fm, 0.12 fm, 0.15 fm)

- Renormalization partially non-pert. (\textbf{FNAL/MILC}, 1.5% error) and normalization via PCAC (\textbf{HPQCD}, no error)

- Simultaneous chiral and continuum extrapolation including all a, valence and sea quark masses:
 - \textbf{SChPT} (\textbf{FNAL/MILC}) and continuum ChPT + $O(a^2)$ terms (\textbf{HPQCD}).

- Highly improved staggered quarks (\textbf{HISQ}): Reduction of $O(a^2 \alpha_s)$ and $O((am_Q)^4)$ discretization errors \to Very precise results for charm physics, charmonium and D, (m_c fixed by η_c). E. Follana et al (2007)\textbf{HPQCD}
Sensitive to \textbf{BSM} physics: Starting to see evidence for nonstandard leptonic decays of D_s mesons?
Dobrescu and Kronfeld 2008
Sensitive to **BSM** physics: Starting to see evidence for nonstandard leptonic decays of D_s mesons? Dobrescu and Kronfeld 2008

<table>
<thead>
<tr>
<th>source</th>
<th>f_D (MeV)</th>
<th>f_{D_s} (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNAL/MILC</td>
<td>215 ± 14</td>
<td>254 ± 14</td>
</tr>
<tr>
<td>HPQCD</td>
<td>207 ± 4</td>
<td>241 ± 3</td>
</tr>
<tr>
<td>exp. (see plot)</td>
<td>207 ± 9</td>
<td>270 ± 8</td>
</tr>
</tbody>
</table>

$> 3\sigma$ discrepancy between experiment and **HPQCD** lattice f_{D_s}.
Sensitive to BSM physics: Starting to see evidence for nonstandard leptonic decays of D_s mesons? Dobrescu and Kronfeld 2008

<table>
<thead>
<tr>
<th>source</th>
<th>f_D (MeV)</th>
<th>f_{D_s} (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNAL/MILC</td>
<td>215 ± 14</td>
<td>254 ± 14</td>
</tr>
<tr>
<td>HPQCD</td>
<td>207 ± 4</td>
<td>241 ± 3</td>
</tr>
<tr>
<td>exp. (see plot)</td>
<td>207 ± 9</td>
<td>270 ± 8</td>
</tr>
</tbody>
</table>

$\# > 3\sigma$ discrepancy between experiment and HPQCD lattice f_{D_s}.

$\#$ Experiment-lattice agreement in f_K, f_π, f_D, m_D, m_{D_s}, $\frac{2m_{D_s} - m_{\eta_c}}{2m_D - m_{\eta_c}}$.
Sensitive to **BSM** physics: Starting to see evidence for nonstandard leptonic decays of D_s mesons? Dobrescu and Kronfeld 2008

![Graph showing f_D and f_{D_s}](image)

<table>
<thead>
<tr>
<th>source</th>
<th>f_D (MeV)</th>
<th>f_{D_s} (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNAL/MILC</td>
<td>215 ± 14</td>
<td>254 ± 14</td>
</tr>
<tr>
<td>HPQCD</td>
<td>207 ± 4</td>
<td>241 ± 3</td>
</tr>
<tr>
<td>exp. (see plot)</td>
<td>207 ± 9</td>
<td>270 ± 8</td>
</tr>
</tbody>
</table>

$> 3\sigma$ discrepancy between experiment and HPQCD lattice f_{D_s}.

Experiment-lattice agreement in f_K, f_π, f_D, m_D, m_{D_s}, $\frac{2m_{D_s}-m_{\eta_c}}{2m_D-m_{\eta_c}}$.

Expected reduction of experimental errors

Experiment uses $V_{cs} = V_{ud}$.

\[f_B \text{ and } f_{B_s} \]

Extraction of CKM matrix elements:

\[B(B^− \rightarrow τ^− \bar{ν}_τ) \propto |V_{ub}|^2 \]

\[f_B^2 \hspace{1cm} \text{experiment} \]

\[\langle 0|\bar{q}\gamma_\mu \gamma_5 b|B_q(p)\rangle = i f_{B_q} p_\mu \]

\[\text{lattice} \]
f_B and f_{B_s}

Extraction of CKM matrix elements:

\[
B(B^- \to \tau^- \bar{\nu}_\tau) \propto |V_{ub}|^2 \frac{f_B^2}{f_{B_s}^2}
\]

Experiment

Lattice

\[
\langle 0| \bar{q} \gamma_\mu \gamma_5 b|B_q(p) \rangle = i f_{B_q} p_\mu
\]

Decay constants needed in the SM prediction for processes potentially very sensitive to BSM effects: for example, f_{B_s} for $B_s \to \mu^+ \mu^-$

$B^- \to \tau^- \bar{\nu}_\tau$ is a sensitive probe of effects from charged Higgs bosons.
Extraction of CKM matrix elements:

\[B(B^- \to \tau^- \bar{\nu}_\tau) \propto |V_{ub}|^2 \]

experiment \hspace{1cm} \text{lattice} \hspace{1cm} f_B^2

\[N_f = 2 + 1 \text{ determinations} \]

heavy valence quarks HPQCD \hspace{1cm} \text{NRQCD} \hspace{1cm} \text{FNAL/MILC} \hspace{1cm} \text{Fermilab action}

<table>
<thead>
<tr>
<th>\hspace{1cm}</th>
<th>\text{FNAL-MILC} (LAT2007)</th>
<th>\text{HPQCD} (2005)</th>
<th>\hspace{1cm}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_B) (MeV) \hspace{1cm}</td>
<td>197 \pm 13</td>
<td>216 \pm 22</td>
<td>\hspace{1cm}</td>
</tr>
<tr>
<td>(f_{B_s}) (MeV) \hspace{1cm}</td>
<td>240 \pm 12</td>
<td>260 \pm 26</td>
<td>\hspace{1cm}</td>
</tr>
<tr>
<td>(f_{B_s}/f_B) \hspace{1cm}</td>
<td>1.22 \pm 0.03</td>
<td>1.20 \pm 0.03</td>
<td>\hspace{1cm}</td>
</tr>
</tbody>
</table>
Extraction of CKM matrix elements:

\[B(B^- \rightarrow \tau^- \bar{\nu}_\tau) \propto |V_{ub}|^2 \]

\[f_B \text{ and } f_{B_s} \]

\[N_f = 2 + 1 \text{ determinations} \]

Heavy valence quarks HPQCD, NRQCD, FNAL/MILC Fermilab action

<table>
<thead>
<tr>
<th></th>
<th>FNAL-MILC (LAT2007)</th>
<th>HPQCD (2005)</th>
<th>errors % current</th>
<th>errors % in 2-5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_B) (MeV)</td>
<td>197 ± 13</td>
<td>216 ± 22</td>
<td>6.8-10.3</td>
<td>4.0</td>
</tr>
<tr>
<td>(f_{B_s}) (MeV)</td>
<td>240 ± 12</td>
<td>260 ± 26</td>
<td>5.1-10.1</td>
<td>3.5</td>
</tr>
<tr>
<td>(f_{B_s}/f_B)</td>
<td>1.22 ± 0.03</td>
<td>1.20 ± 0.03</td>
<td>2.7-2.6</td>
<td>2.0</td>
</tr>
</tbody>
</table>

J. Shigemitsu 2007

Extraction of \(f_{B_s}/f_B \) from double ratios: e.g. \([f_{B_s}/f_B]/[f_K/f_\pi]\)
3. Semileptonic decays

\[J = V_{\mu}, A_{\mu} \]
\[V_{ij} \]

\[W \]
\[\nu \]

\[\mu \]

\[P_1 \]
\[P_2 \]
Exclusive $B \to D^* l \nu$: determination of $|V_{cb}|$

- $B \to D^* l \nu$ rate at zero recoil $\propto |V_{cb} h_A(1)|$

- $|V_{cb}|$ needed as an input in ϵ_K and rare kaon decays ($Br(K \to \pi \nu \bar{\nu})$).
Excluse $B \rightarrow D^* l \nu$: determination of $|V_{cb}|$

- $B \rightarrow D^* l \nu$ rate at zero recoil $\propto |V_{cb} h_A(1)|$
- $|V_{cb}|$ needed as an input in ϵ_K and rare kaon decays ($Br(K \rightarrow \pi \nu \bar{\nu})$).
- New double ratio method: $|h_A(1)|^2 = \frac{\langle D^* | \bar{c} \gamma j \gamma 5 b | \bar{B} \rangle \langle \bar{B} | \bar{b} \gamma_j \gamma 5 c | D^* \rangle}{\langle D^* | \bar{c} \gamma 4 c | D^* \rangle \langle \bar{B} | b \gamma 4 b | \bar{B} \rangle}$

$N_f = 2 + 1$ FNAL-MILC (Laiho, 2008)
Exclusive $B \to D^* l \nu$: determination of $|V_{cb}|$

$B \to D^* l \nu$ rate at zero recoil $\propto |V_{cb}h_A(1)|$

$|V_{cb}|$ needed as an input in ϵ_K and rare kaon decays ($Br(K \to \pi \nu \bar{\nu})$).

New double ratio method: $|h_A(1)|^2 = \frac{\langle D^* | \bar{c} \gamma_j \gamma_5 b | \bar{B} \rangle \langle \bar{B} | \bar{b} \gamma_j \gamma_5 c | D^* \rangle}{\langle D^* | \bar{c} \gamma_4 c | D^* \rangle \langle \bar{B} | b \gamma_4 b | \bar{B} \rangle}$

$N_f = 2 + 1$

FNAL-MILC (Laiho, 2008)

\[h_{A_1}(1) = 0.921(13)^{\text{stat.}}(19)^{\text{syst.}} \]

$|V_{cb}| \times 10^3 = 38.8(0.6)^{\text{exp.}}(1.0)^{\text{latt.}}$
Exclusive $B \to D^* l \nu$: determination of $|V_{cb}|$

$B \to D^* l \nu$ rate at zero recoil $\propto |V_{cb} h_A(1)|$

$|V_{cb}|$ needed as an input in ϵ_K and rare kaon decays ($Br(K \to \pi \nu \bar{\nu})$).

New double ratio method: $|h_A(1)|^2 = \frac{\langle D^* | \bar{c} \gamma_j \gamma_5 b | \bar{B} \rangle \langle \bar{B} | \bar{b} \gamma_j \gamma_5 c | D^* \rangle}{\langle D^* | \bar{c} \gamma_4 c | D^* \rangle \langle \bar{B} | b \gamma_4 b | \bar{B} \rangle}$

$$N_f = 2 + 1$$

FNAL-MILC (Laiho, 2008)

\[h_{A_1}(1) = 0.921(13)_{\text{stat.}}(19)_{\text{syst.}} \]

\[|V_{cb}| \times 10^3 = 38.8(0.6)_{\text{exp.}}(1.0)_{\text{latt.}} \]

\[|V_{cb}| \times 10^3 = 38.8(0.6)_{\text{exp.}}(0.8)_{\text{latt.}} \]

(one year)
Exclusive $B \rightarrow D^*\ell\nu$: determination of $|V_{cb}|$

$B \rightarrow D^*\ell\nu$ rate at zero recoil $\propto |V_{cb}h_A(1)|$

$|V_{cb}|$ needed as an input in ϵ_K and rare kaon decays ($Br(K \rightarrow \pi\nu\bar{\nu})$).

New double ratio method: $|h_A(1)|^2 = \frac{\langle D^*|\bar{c}\gamma_j\gamma_5 b|\bar{B}\rangle\langle \bar{B}|\bar{b}\gamma_j\gamma_5 c|D^*\rangle}{\langle D^*|\bar{c}\gamma_4 c|D^*\rangle\langle \bar{B}|b\gamma_4 b|\bar{B}\rangle}$

$N_f = 2 + 1$ FNAL-MILC (Laiho, 2008)

\[h_{A_1}(1) = 0.921(13)_{\text{stat.}}(19)_{\text{syst.}} \]

\[|V_{cb}| \times 10^3 = 38.8(0.6)_{\text{exp.}}(1.0)_{\text{latt.}} \]

\[|V_{cb}| \times 10^3 = 38.8(0.6)_{\text{exp.}}(0.8)_{\text{latt.}} \]

(one year)

Inclusive determination is $|V_{cb}| \times 10^3 = 41.7(0.7) \ (2\sigma \text{ difference})$
$B \to \pi l\nu$: determination of $|V_{ub}|$

Only $N_f = 2 + 1$ calculation so far: staggered HPQCD PRD73/75 (2006/07)

$$Br(B \to \pi l\nu) = |V_{ub}|^2 \int_0^{q_{max}^2} dq^2 f_{B\to\pi}(q^2)^2 \times \text{(known factors)}$$

NRQCD for b valence quarks
$B \to \pi l \nu$: determination of $|V_{ub}|$

Only $N_f = 2 + 1$ calculation so far: staggered HPQCD PRD73/75 (2006/07)

\[
Br(B \to \pi l \nu) = |V_{ub}|^2 \int_{0}^{q_{max}^2} d{q^2} f_{B \to \pi}^{B \to \pi}(q^2)^2 \times \text{(known factors)}
\]

NRQCD for b valence quarks

$|V_{ub}| \times 10^3 = 3.55(25)_{\text{exp.}}(50)_{\text{theor.}}$

14% theory error dominated by statistics and matching
B → πlν: determination of |V_{ub}|

Only $N_f = 2 + 1$ calculation so far: staggered HPQCD PRD73/75 (2006/07)

$$Br(B \to \pi l\nu) = |V_{ub}|^2 \int_0^{q_{max}^2} dq^2 f_{B \to \pi} (q^2)^2 \times (\text{known factors})$$

NRQCD for b valence quarks

$$|V_{ub}| \times 10^3 = 3.55(25)_{\text{exp.}}(50)_{\text{theor.}}$$

14% theory error dominated by statistics and matching

Poor overlap in q^2 between lattice and experiment
→ increases the total error
* Moving NRQCD: Generate data at low q^2 + keeping statistical errors under control K. Wong Lattice2007.
Work in progress to reduce total error

* **Moving NRQCD**: Generate data at low q^2 + keeping statistical errors under control [K. Wong Lattice2007].

* **z-fit**: combine lattice and experimental data over full q^2 region using model-independent expression based on analyticity and unitarity [Arnesen et al.; Becher & Hill; P. Ball; P. Mackenzie and R. Van de Water]

Simultaneous fit of lattice and BABAR F_+ data

χ^2/d.o.f. = 0.4; C.L. = 0.99

- 3 parameter z-fit: $a_1/a_0 = -1.16 +/- 0.06; a_2/a_0 = -3.23 +/- 0.30$
- sys. error from rSχPT fit w/ additional NNLO analytic terms
- "best fit" of f_{p+}, f_{\perp} w/ $g_\pi = 0.27$
- 12-bin BABAR rescaled by $|V_{ub}|$ from 3-parameter fit

Work in progress to reduce total error

* Moving NRQCD: Generate data at low q^2 + keeping statistical errors under control K. Wong Lattice2007.

* **z-fit**: combine lattice and experimental data over full q^2 region using model-independent expression based on analyticity and unitarity

Arnesen et al.; Becher & Hill; P. Ball; P. Mackenzie and R. Van de Water

Simultaneous fit of lattice and BABAR F^+ data

χ^2/d.o.f. = 0.4; C.L. = 0.99

Work underway to analyze systematics → FNAL-MILC (Mackenzie, LAT07)

total error after finishing current analysis ∼12%.
Semileptonic decays: Improvements in progress

\# \(D \rightarrow \pi l \nu \) and \(D \rightarrow K l \nu \):

FNAL-MILC working on \(N_f = 2 + 1 \) improvement of 2005 calculation of the form factors \(f_{+}^{D \rightarrow \pi}(0) \) and \(f_{+}^{D \rightarrow K}(0) \) (reduction of discr. errors)

\[\rightarrow V_{cd} \text{ and } V_{cs}. \]
Semileptonic decays: Improvements in progress

$D \to \pi l \nu$ and $D \to K l \nu$:

FNAL-MILC working on $N_f = 2 + 1$ improvement of 2005 calculation of the form factors $f_{D \to \pi}^{(0)}$ and $f_{D \to K}^{(0)}$ (reduction of discr. errors)

$\to V_{cd}$ and V_{cs}.

* Becirevic, Haas and Mescia: Testing systematic errors reduction for several double ratios with $N_f = 2$ Wilson fermions.
Semileptonic decays: Improvements in progress

\[D \rightarrow \pi l \nu \text{ and } D \rightarrow Kl \nu: \]

FNAL-MILC working on \(N_f = 2 + 1 \) improvement of 2005 calculation of the form factors \(f_{\pi}^{D \rightarrow \pi}(0) \) and \(f_{K}^{D \rightarrow K}(0) \) (reduction of discr. errors)

\[\rightarrow V_{cd} \text{ and } V_{cs}. \]

* Becirevic, Haas and Mescia: Testing systematic errors reduction for several double ratios with \(N_f = 2 \) Wilson fermions.

* \(\frac{\Gamma(D \rightarrow l \nu)}{\Gamma(D \rightarrow \pi l \nu)} \) independent of \(|V_{cq}| \rightarrow \) consistency check

* \(\frac{\Gamma(D_s \rightarrow l \nu)}{\Gamma(D \rightarrow Kl \nu)} \) CKM independent test of lattice (QCD)
$B \to Dl\nu$ (alternative determination of V_{cb}):

de Divitiis et al 2007 Quenched analysis

* Including the case of non-vanishing lepton mass.

** Can study $Br(B \to D\tau\nu_\tau)/Br(B \to Dev_e)$, which is a good place to look for charged Higgs contributions to low energy observables.

** Lepton-flavour universality checks on the extraction of V_{cb} are possible.
4. $B^0 - \bar{B}^0$ mixing: $\Delta M_{d,s}$, $\Delta \Gamma_{d,s}$ and ξ

Experimental measurements:

<table>
<thead>
<tr>
<th>CDF</th>
<th>PDG07 average</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta M_s</td>
<td>_{exp.} = 17.77 \pm 0.12 \text{ ps}^{-1}$</td>
</tr>
<tr>
<td>$\Delta \Gamma_s</td>
<td>_{\text{D}0} = 0.17 \pm 0.09 \pm 0.02 \text{ ps}^{-1}$</td>
</tr>
</tbody>
</table>

- theoretically: In the Standard Model

\[\Delta M_q|_{\text{theor.}} \propto |V_{tq}^* V_{tb}|^2 \quad f_B^2 \hat{B}_B q \]

\implies Need accurate theoretical calculation of $f_B^2 \hat{B}_B q$
4. $B^0 - \bar{B}^0$ mixing: $\Delta M_{d,s}$, $\Delta \Gamma_{d,s}$ and ξ

Experimental measurements:

<table>
<thead>
<tr>
<th>CDF</th>
<th>PDG07 average</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta M_s</td>
<td>_{exp.} = 17.77 \pm 0.12 \text{ps}^{-1}$</td>
</tr>
<tr>
<td>$\Delta \Gamma_s</td>
<td>_{exp.} = 0.17 \pm 0.09 \pm 0.02 \text{ps}^{-1}$</td>
</tr>
</tbody>
</table>

- theoretically: In the Standard Model

$$\Delta M_q|_{theor.} \propto |V^*_{tq}V_{tb}|^2 \quad f_{Bq}^2 \hat{B}_{Bq}$$

\implies Need accurate theoretical calculation of $f_{Bq}^2 \hat{B}_{Bq}$

Precise determination of CKM matrix elements

$$\left| \frac{V_{td}}{V_{ts}} \right| = \frac{f_{Bs} \sqrt{B_{B_s}}}{f_{Bd} \sqrt{B_{B_d}}} \sqrt{\frac{\Delta M_d M_{B_s}}{\Delta M_s M_{B_d}}} \sqrt{\frac{\Delta M_d}{\Delta M_s}} \sqrt{\frac{M_{B_s}}{M_{B_d}}} \sqrt{\xi}$$

* Many uncertainties in the theoretical (lattice) determination cancel totally or partially in the ratio
NP could enter through new particles in box diagrams.

Recent claims of NP effects in the $B_s^0 - \bar{B}_s^0$ and $B_d^0 - \bar{B}_d^0$ systems
NP could enter through new particles in box diagrams.

Recent claims of NP effects in the $B_s^0 - \bar{B}_s^0$ and $B_d^0 - \bar{B}_d^0$ systems

Two unquenched $N_f = 2 + 1$ calculations underway: HPQCD and MILC/FNAL

* Improved staggered (Asqtad) for light quarks and NRQCD (HPQCD) Fermilab action (MILC/FNAL)

* Calculation of all the matrix elements needed to determine $\Delta M_{d,s}$, $\Delta \Gamma_{d,s}$ and ξ.
NP could enter through new particles in box diagrams.

Recent claims of NP effects in the $B^0_s - \bar{B}^0_s$ and $B^0_d - \bar{B}^0_d$ systems (Bona et al. (UTfit Col.), arXiv:0803.0659; Lunghi and Soni, arXiv:0803.0512; Buras and Guadagnoli, arXiv:0805.3887)

Two unquenched $N_f = 2 + 1$ calculations underway: HPQCD and MILC/FNAL

- Improved staggered (Asqtad) for light quarks and NRQCD (HPQCD) Fermilab action (MILC/FNAL)
- Calculation of all the matrix elements needed to determine $\Delta M_{d,s}$, $\Delta \Gamma_{d,s}$ and ξ.

Current status: working on the chiral extrapolation (NLO+analytic NNLO χPT)
Preliminary results for $f_{B_q} \sqrt{M_{B_q} B_{B_q}}$

$$f_{B_s} \sqrt{M_{B_s} \hat{B}_{B_s}}(\text{GeV}^{3/2})$$

with $m_{s}^{valence}$ fixed to its physical value and m_{s}^{sea} very close to it.

Statistics + fitting errors $\sim 1 - 2\%$

Statistics and systematic errors included

Same for $f_{B_d} \sqrt{B_{B_d}}$
Preliminary results for \(f_{Bq} \sqrt{M_{Bq} \hat{B}_{Bq}} \)

\[
f_{Bq} \sqrt{M_{Bq} \hat{B}_{Bq}} (\text{GeV}^{3/2})
\]

Fermilab/MILC

Example: Ensembles with \(a = 0.12 \text{ fm} \).

Full QCD: only statistical errors included.
Preliminary results for ξ: Full QCD

\[\xi \frac{M_{B_s}}{M_{B_d}} = \left(f_{B_s} \sqrt{M_{B_s} B_{B_s}} \right) / \left(f_{B_d} \sqrt{M_{B_d} B_{B_d}} \right) \]

Only statistical errors included.

Only full QCD points included.
Discussion of errors

<table>
<thead>
<tr>
<th>Term</th>
<th>Estimate (as %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_{B_q} \sqrt{B_{B_q}}$</td>
<td>5 – 7%</td>
</tr>
<tr>
<td>ξ</td>
<td>2 – 3%</td>
</tr>
<tr>
<td>Total (estimate)</td>
<td>5 – 7%</td>
</tr>
</tbody>
</table>
Discussion of errors

<table>
<thead>
<tr>
<th>$f_B \sqrt{B_B}$</th>
<th>ξ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (estimate)</td>
<td>5 - 7%</td>
</tr>
</tbody>
</table>

Expected improvements in 2 years:
- smaller lattice spacings,
- better statistics,
- development of non-perturbative or partially non-perturbative matching,
- more accurate inputs ($a m_b$, a, ...).

Reduction of errors by a factor of 1.5 – 2
Discussion of errors

\[f_{Bq} \sqrt{B_{Bq}} \xi \]

| Total (estimate) | \(5 - 7\%\) | \(2 - 3\%\) |

Expected improvements in 2 years: smaller lattice spacings, better statistics, development of non-perturbative or partially non-perturbative matching, more accurate inputs (\(a m_b, a, \ldots\)).

Reduction of errors by a factor of 1.5 – 2

Underway RBC/UKQCD: C. Albertus et al.

* In an early stage: static limit, \(m_{\text{pion}} \geq 400\text{MeV}, \ldots\)
B^0 and D^0 mixing beyond the SM

Effects of heavy new particles seen in the form of effective operators built with SM degrees of freedom (short-distance contributions for $D^0 - \bar{D}^0$)

$$\mathcal{H}_{eff}^{\Delta F = 2} = \sum_{i=1}^{5} C_i Q_i + \sum_{i=1}^{3} \tilde{C}_i \tilde{Q}_i$$

** With Q_i and \tilde{Q}_i four-fermion operators
B^0 and D^0 mixing beyond the SM

Effects of heavy new particles seen in the form of effective operators built with SM degrees of freedom (short-distance contributions for $D^0 - \bar{D}^0$)

\[\mathcal{H}_{\text{eff}}^{\Delta F=2} = \sum_{i=1}^{5} C_i Q_i + \sum_{i=1}^{3} \tilde{C}_i \tilde{Q}_i \]

With Q_i and \tilde{Q}_i four-fermion operators

- C_i, \tilde{C}_i Wilson coeff. calculated for a particular BSM theory
- $\langle F^0|Q_i|F^0 \rangle$ calculated on the lattice

SM predictions $+$ BSM contributions $+$ experiment \rightarrow constraints on BSM physics
B^0 and D^0 mixing beyond the SM

Effects of heavy new particles seen in the form of effective operators built with SM degrees of freedom (short-distance contributions for $D^0 - \bar{D}^0$)

$$\mathcal{H}_{eff}^{\Delta F = 2} = \sum_{i=1}^{5} C_i Q_i + \sum_{i=1}^{3} \tilde{C}_i \tilde{Q}_i$$

** With Q_i and \tilde{Q}_i four-fermion operators
 - C_i, \tilde{C}_i Wilson coeff. calculated for a particular BSM theory
 - $\langle F^0 | Q_i | F^0 \rangle$ calculated on the lattice

SM predictions + BSM contributions + experiment

→ constraints on BSM physics

Same programme can be applied for extra operators
B^0 and D^0 mixing beyond the SM

Effects of heavy new particles seen in the form of effective operators built with SM degrees of freedom (short-distance contributions for D^0 − \bar{D}^0)

\[
\mathcal{H}_{eff}^{\Delta F=2} = \sum_{i=1}^{5} C_i Q_i + \sum_{i=1}^{3} \tilde{C}_i \tilde{Q}_i
\]

With Q_i and \tilde{Q}_i four-fermion operators

- C_i, \tilde{C}_i Wilson coeff. calculated for a particular BSM theory
- \langle F^0 | Q_i | F^0 \rangle calculated on the lattice

SM predictions + BSM contributions + experiment

→ constraints on BSM physics

Same programme can be applied for extra operators

Complete N_f = 2 + 1 analysis of \Delta B = 2 matrix elements expected from both FNAL-MILC and HPQCD, and \Delta D = 2 from FNAL-MILC in 1-2 years with errors < 10%.
5. Conclusions and outlook

Important progress in lattice calculations including sea quarks
\((N_f = 2 + 1)\)

* Precise new results (few percent errors) in \(D\) sectors.

* Expected for this year: precise results in \(b\) physics: \(B^0\) mixing parameters, decay constants.
5. Conclusions and outlook

Important progress in lattice calculations including sea quarks ($N_f = 2 + 1$)

* Precise new results (few percent errors) in D sectors.

* **Expected for this year**: precise results in b physics: B^0 mixing parameters, decay constants.

Several quark formalisms giving good results and more $N_f = 2 + 1$ configurations being generated \rightarrow important test
5. Conclusions and outlook

Important progress in lattice calculations including sea quarks \((N_f = 2 + 1) \)

* Precise new results (few percent errors) in D sectors.

* **Expected for this year**: precise results in b physics: B^0 mixing parameters, decay constants.

Several quark formalisms giving good results and more $N_f = 2 + 1$ configurations being generated \rightarrow important test

Prospects for next two years

* Reduction in uncertainties of quantities relevant for CKM physics by a factor of around 2.

* Consistency checks of lattice QCD methods by …

 ** more comparison against experiment.

 ** comparing lattice calculations using different fermion formulations.
CKM 2008 LATTICE QCD

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
η
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
CKM 2008 LATTICE QCD
BBBf
sBB
sBf
KB
cbV
ubV
βγ
PDG06

* \(|V_{cb}| \) from RBC/UKQCD
* \(|V_{ub}| \) from Jack Laiho, LAT2007
* \(|V_{us}| \) from \(K_{exp} \) + HPQCD
* preliminary result from FNAL/MILC
* \(\frac{f_{B_s}}{f_{B}} \) from Flynn and Nieves, 0705.3553
* \(\hat{B}_k \) from RBC/UKQCD

C. Davies & C. McNeile
Other Heavy-light semileptonic decays

<table>
<thead>
<tr>
<th></th>
<th>Flavour neutral</th>
<th>Unstable</th>
<th>affordable now</th>
<th>in 5 years?</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B \to \eta l\nu$</td>
<td>\checkmark</td>
<td></td>
<td>possible but</td>
<td></td>
</tr>
<tr>
<td>$B \to \eta' l\nu$</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>expensive</td>
<td></td>
</tr>
<tr>
<td>$B \to \rho l\nu$</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
<td>\checkmark</td>
</tr>
<tr>
<td>$B \to \omega l\nu$</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
<td>\checkmark</td>
</tr>
<tr>
<td>$B \to K l\nu$</td>
<td></td>
<td>\checkmark</td>
<td></td>
<td>\checkmark</td>
</tr>
<tr>
<td>$B \to K^* l\nu$</td>
<td></td>
<td>\checkmark</td>
<td></td>
<td>\checkmark</td>
</tr>
<tr>
<td>$B \to \phi l\nu$</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
<td>\checkmark</td>
</tr>
<tr>
<td>$B \to K^* \gamma$</td>
<td></td>
<td>\checkmark</td>
<td></td>
<td>\checkmark</td>
</tr>
</tbody>
</table>

R. Van de Water
HISQ action

E. Follana et al, HPQCD coll.

- Highly improved staggered action.
- Much improved control of discretization errors.
 * Highly reduce $O(a^2 \alpha_s)$ errors (an order of magnitude)
 * Substantially reduce taste-changing with respect to Asqtad
 * No tree-level $O((am)^4)$ at first order in the quark velocity v/c
 → accurate results for charm quarks
Error budget for decay constants

<table>
<thead>
<tr>
<th>Source</th>
<th>f_π</th>
<th>f_K</th>
<th>f_K/f_π</th>
<th>f_D</th>
<th>f_{D_s}</th>
<th>f_{D_s}/f_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1 uncert.</td>
<td>1.4</td>
<td>1.1</td>
<td>0.3</td>
<td>1.4</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>a^2 extrap.</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>finite volume</td>
<td>0.8</td>
<td>0.4</td>
<td>0.4</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>$m_{u/s}$ extrap.</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>statistical</td>
<td>0.5</td>
<td>0.4</td>
<td>0.2</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>m_s evol.</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>m_d, QED, etc</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Total(%)</td>
<td>1.7</td>
<td>1.3</td>
<td>0.6</td>
<td>1.8</td>
<td>1.3</td>
<td>0.9</td>
</tr>
</tbody>
</table>
m_c extracted from current-current correlators.

* **HISQ** action used to determine moments G_n of charm-quark pseudoscalar, vector and axial-vector correlators.

$$G_n \equiv \sum_t (t/a)^n G(t)$$

with

$$G(t) \equiv a^6 \sum_{\vec{x}} (am_{0c})^2 \langle 0 | J(\vec{x}, t) J(0, 0) | 0 \rangle$$

* Four-loop results from continuum perturbation theory for the moments.

$\begin{align*}
 m_c(m_c) &= 1.266(16) GeV \\
 m_c(3 GeV) &= 0.983(13) GeV
\end{align*}$
Same programme can be applied for extra operators

\[\langle \bar{B}_0^0 d(s) | Q_{i=1-5} | B_0^0 d(s) \rangle \]

- Chiral perturbation theory more complicated (extra free parameters):

\[\langle \bar{B}_0^0 d(s) | Q_{i=1-5} | B_0^0 d(s) \rangle \to_{chiral} \Gamma_i (1 + L) + \Gamma_i' L' + \text{analytic terms} \]
Same programme can be applied for extra operators

\[
\langle \overline{B}_0^{0(d(s)}} | Q_{i=1-5} | B_0^{0(d(s)}} \rangle
\]

- Chiral perturbation theory more complicated (extra free parameters):

\[
\langle \overline{B}_0^{0(d(s)}} | Q_{i=1-5} | B_0^{0(d(s)}} \rangle \rightarrow_{chiral} \Gamma_i (1 + L) + \Gamma_i' L' + \text{analytic terms}
\]

Complete \(N_{f+1} \) analysis of \(\Delta B = 2 \) matrix elements expected from both Fermilab lattice-MILC and HPQCD collaborations in 1-2 years with errors < 10%.

* **First results**: One-loop renormalization for HPQCD study

(E.G, Shigemitsu, Trottier)