Mixing and CP violation at DØ

Alejandro García-Guerra

CINVESTAV-Mexico
On behalf of DØ collaboration

June 24th, 2008

BEACH 2008 Conference. South Carolina
In this talk...

- Introduction
- The Flavor Oscillation Frequency of B_s.
- The time-dependent angular analysis for the decay $B_s \rightarrow J/\psi \phi$
- New measurement of $\Delta \Gamma_s$ from $\text{Br}(B_s \rightarrow D_s^{(*)} D_s^{(*)})$
- CP asymmetry in $B^\pm \rightarrow J/\psi K^\pm$
One of the hypothesis for the current baryon asymmetry in the Universe is the CP violation.

SM predicts that there exist CPV effects, but they are relatively small.

A measurement of large CPV contributions from $B_s \to J/\psi\phi$ and/or $B^\pm \to J/\psi K^\pm$ decays can give us signs of New Physics.

The B_s has an “identity crisis”: it changes from particle to antiparticle.

GOOD REASONS TO DO DETAILED STUDIES IN B MESONS!!!
The DØ Detector

- Silicon and fiber trackers immersed into 2 T solenoid, coverage $|\eta| < 3$
 - Precise vertexing and tracking
 - New Layer 0 silicon on beam pipe in 2006 improves impact parameter resolution
- Muon system (central + forward), coverage $|\eta| < 2$
 - Includes its own magnet-toroid
- Two magnets- solenoid and toroid- flip polarities every two weeks
 - Unique feature of DØ
 - Diminishes detector asymmetries
\[V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4) \]

In SM CP-violation is governed by only one parameter: \(\eta \).

Unitary triangle in the \(B_s \) system

\[V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0 \]

\[\frac{V_{us}V_{ub}^*}{V_{cs}V_{cb}^*} = (\bar{\rho}, \bar{\eta}) \quad \frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*} = \beta_s \]

Area \(\propto \) level of CP violation

CP violation phase \(\beta_s^{SM} \) is predicted to be small:

\[2\beta_s^{SM} = 2 \arg \left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*} \right) \approx 0.04 \pm 0.01 \text{ rad} \]
CKM matrix

\[V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4) \]

In SM CP-violation is governed by only one parameter: \(\eta \).

Unitary triangle in the \(B_s \) system

\[V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0 \]

Area \(\propto \) level of CP violation

CP violation phase \(\beta_{s}^{SM} \) is predicted to be small:

\[2/\beta_{s}^{SM} = 2 \arg \left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*} \right) \approx 0.04 \pm 0.01 \ \text{rad} \]
The B_s's identity crisis

Neutral B mesons can spontaneously transform in the corresponding antiparticle

The Schrodinger for B_s system

$$i \frac{d}{dt} \begin{pmatrix} |\bar{B}_s(t)\rangle \\ |B_s(t)\rangle \end{pmatrix} = \left(M - \frac{i}{2} \Gamma \right) \begin{pmatrix} |\bar{B}_s(t)\rangle \\ |B_s(t)\rangle \end{pmatrix}$$

$$|B^L_s(t)\rangle = p |B_s(t)\rangle + q |\bar{B}_s(t)\rangle$$

$$|B^H_s(t)\rangle = p |B_s(t)\rangle - q |\bar{B}_s(t)\rangle$$

- Mixing oscillation frequency
 $$\Delta m_s = M_H - M_L = 2|M_{12}| \approx (19.3 \pm 6.7) \text{ ps}^{-1}$$

- Decay width difference
 $$\Delta \Gamma_s = \Gamma_L - \Gamma_H = 2|\Gamma_{12}| \cos \phi_s \approx (0.096 \pm 0.039) \text{ ps}^{-1}$$

- CPV phase
 $$\phi^{SM}_s = \text{arg} \left(-\frac{M_{12}}{\Gamma_{12}} \right) \approx 0.004$$

NP may introduce a new phase such that

$$\phi_s = \phi^{SM}_s + \phi^{NP}_s, \ 2\beta_s = 2\beta^{SM}_s - \phi^{NP}_s$$

If the phase ϕ^{NP}_s dominates

$$\phi_s \approx \phi^{NP}_s \approx -2\beta_s$$

1Lenz,Nierste hep-ph/0612167
The **B_s's identity crisis**

Neutral B mesons can spontaneously transform in the corresponding antiparticle

The Schrödinger for B_s system

\[
\frac{id}{dt} \left(\begin{array}{c} |\bar{B}_s(t)\rangle \\ |B_s(t)\rangle \end{array} \right) = \left(M - \frac{i}{2} \Gamma \right) \left(\begin{array}{c} |\bar{B}_s(t)\rangle \\ |B_s(t)\rangle \end{array} \right)
\]

\[
|B^L_s(t)\rangle = p|B_s(t)\rangle + q|\bar{B}_s(t)\rangle
\]

\[
|B^H_s(t)\rangle = p|B_s(t)\rangle - q|\bar{B}_s(t)\rangle
\]

- **Mixing oscillation frequency**
 \[
 \Delta m_s = M_H - M_L = 2|M_{12}| \quad [(19.3 \pm 6.7) \text{ ps}^{-1}]_{\text{theory}}
 \]

- **Decay width difference**
 \[
 \Delta \Gamma_s = \Gamma_L - \Gamma_H = 2|\Gamma_{12}| \cos \phi_s \quad [(0.096 \pm 0.039) \text{ ps}^{-1}]_{\text{theory}}
 \]

- **CPV phase**
 \[
 \phi_s^{\text{SM}} = \arg \left(- \frac{M_{12}}{\Gamma_{12}} \right) \approx 0.004_{\text{theory}}
 \]

NP may introduce a new phase such that $\phi_s = \phi_s^{\text{SM}} + \phi_s^{\text{NP}}$, $2\beta_s = 2\beta_s^{\text{SM}} - \phi_s^{\text{NP}}$

If the phase ϕ_s^{NP} dominates,

\[
\phi_s \approx \phi_s^{\text{NP}} \approx -2\beta_s
\]

\(^1\)Lenz,Nierste hep-ph/0612167
The B_s's identity crisis

Neutral B mesons can spontaneously transform in the corresponding antiparticle

The Schrödinger for B_s system

\[
\frac{i}{dt} \begin{pmatrix} \bar{B}_s(t) \\ B_s(t) \end{pmatrix} = \begin{pmatrix} M - \frac{i}{2} \Gamma \end{pmatrix} \begin{pmatrix} \bar{B}_s(t) \\ B_s(t) \end{pmatrix}
\]

\[
|B_{sL}(t)\rangle = p|B_s(t)\rangle + q|\bar{B}_s(t)\rangle
\]

\[
|B_{sH}(t)\rangle = p|B_s(t)\rangle - q|\bar{B}_s(t)\rangle
\]

- Mixing oscillation frequency
 \[
 \Delta m_s = M_H - M_L = 2|M_{12}| \quad [(19.3 \pm 6.7) \text{ ps}^{-1}]_{\text{theory}}
 \]

- Decay width difference
 \[
 \Delta \Gamma_s = \Gamma_L - \Gamma_H = 2|\Gamma_{12}| \cos \phi_s \quad [(0.096 \pm 0.039) \text{ ps}^{-1}]_{\text{theory}}
 \]

- CPV phase
 \[
 \phi_s^{SM} = \arg \left(-\frac{M_{12}}{\Gamma_{12}} \right) \approx 0.004_{\text{theory}}
 \]

NP may introduce a new phase such that

\[
\phi_s = \phi_s^{SM} + \phi_s^{NP}, \quad 2\beta_s = 2\beta_s^{SM} - \phi_s^{NP}
\]

If the phase ϕ_s^{NP} dominates

\[
\phi_s \approx \phi_s^{NP} \approx -2\beta_s
\]

\[1\] Lenz, Nierste hep-ph/0612167
Flavor tagging and the frequency oscillation Δm_s
We need to determine (tag) B_s/\bar{B}_s initial- and final-state flavors.

Two main tagging methods:
- **Same-side tagging (SST):**
 - It is based on the sign of an associated charged particle.
- **Opposite-side tagging:**
 - Does not depend on the $B-$meson flavor

Tagging parameters
- $\eta_s = \frac{N_{corr \ tagged \ evts}}{N_{tot}}$
- $D = 2\eta_s - 1$
- $\varepsilon = \frac{N_{tot \ tagged \ evts}}{N_{total \ evts}}$
- $d = \frac{1 - y}{1 + y}$. $d > 0 \Rightarrow b$ quark; $d < 0 \Rightarrow \bar{b}$ quark
- $P = \varepsilon D^2 = (4 - 5)\%$
New features

- Fully reconstructed hadronic mode.
- Partially reconstructed hadronic and semileptonic modes.
- Combined SST and OST flavor-tagging.
- Improved decay length resolution.
- K-factor: correction for missing particles.
- Scale factor

<table>
<thead>
<tr>
<th>Semileptonic and hadronic modes</th>
<th>N_{sig}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_s \rightarrow \mu \nu D_s(\phi \pi)X$</td>
<td>45 K</td>
</tr>
<tr>
<td>$B_s \rightarrow e\nu D_s(\phi \pi)X$</td>
<td>1.7 K</td>
</tr>
<tr>
<td>$B_s \rightarrow \mu \nu D_s(K^*0 K)X$</td>
<td>18 K</td>
</tr>
<tr>
<td>$B_s \rightarrow \mu \nu D_s(K_s^0 K)X$</td>
<td>0.6K</td>
</tr>
<tr>
<td>$B_s \rightarrow \pi D_s(\phi \pi)X$</td>
<td>0.25 K</td>
</tr>
</tbody>
</table>

DØ RunII Preliminary

![Graph showing dilution vs. $|d_{COMB}|$](image)
The Frequency Oscillation Δm_s @ DØ

Preliminary results

$\Delta m_s = 18.53 \pm 0.93\text{(stat)} \pm 0.30\text{(syst)}$ ps$^{-1}$

Significance 2.9σ

The measurement is in good agreement with CDFa:

$17.77 \pm 0.10\text{(stat)} \pm 0.07\text{(syst)}$ ps$^{-1}$

The Frequency Oscillation $\Delta m_s @ D\O$

Preliminary results

$\Delta m_s = 18.53 \pm 0.93\text{(stat)} \pm 0.30\text{(syst)} \text{ps}^{-1}$

Significance 2.9σ

The measurement is in good agreement with CDFa:

$17.77 \pm 0.10\text{(stat)} \pm 0.07\text{(syst)} \text{ps}^{-1}$

CPV in the $B_s \rightarrow J/\psi \phi$?
CPV in the decay $B_s \to J/\psi \phi$? The **tagged angular analysis**

- It is necessary to separate the different parity contributions.
- We use the Combined flavor-tagging method.
- Upper (lower) sign for pure $B_s (\bar{B}_s)$ at $t = 0$.

$$|A_0(t)|^2 = |A_0(0)|^2 \left[T_+ \pm e^{-\Gamma t} \sin \phi_s \sin(\Delta M_{s} t) \right] ,$$

$$|A_\parallel(t)|^2 = |A_\parallel(0)|^2 \left[T_+ \pm e^{-\Gamma t} \sin \phi_s \sin(\Delta M_{s} t) \right] ,$$

$$|A_\perp(t)|^2 = |A_\perp(0)|^2 \left[T_+ \mp e^{-\Gamma t} \sin \phi_s \sin(\Delta M_{s} t) \right]$$

where

$$T_\pm = (1/2) \left[(1 \pm \cos \phi_s) e^{-\Gamma_L t} + (1 \mp \cos \phi_s) e^{-\Gamma_H t} \right] .$$

$$\Re(A_0(t)A_\parallel(t)) = |A_0(0)||A_\parallel(0)| \cos(\delta_2 - \delta_1) [T_+ \pm e^{-\Gamma t} \sin \phi_s \sin(\Delta M_{s} t)] ,$$
CPV in the decay $B_s \rightarrow J/\psi \phi$? The results

Results with flavor tagging

$\tau_s = 1.51 \pm 0.06 \pm 0.01$ ps

$N_{sig} = 1,967 \pm 65$

Angular analysis

mass mean = 5361.5 ± 1.0 MeV/c^2
CPV in the decay $B_s \rightarrow J/\psi \phi$? The results

\[\Delta \Gamma_s = 0.19 \pm 0.07^{+0.02}_{-0.01} \text{ ps}^{-1} \]
\[\phi_s = -0.57^{+0.24+0.07}_{-0.30-0.02} \text{ rad} \]
\[\Delta m_s \equiv 17.77 \text{ ps}^{-1} \text{ fixed} \]
\[\delta_1 = -0.46 \text{ Gaussian constrained} \]
\[\delta_2 = 2.92 \text{ Gaussian constrained} \]

New physics or only fluctuations?
To be continued...

References:

- hep-ex/0802.2255, Submitted to PRL
CPV in the decay $B_s \rightarrow J/\psi\phi$? The results

\[\Delta \Gamma_s = 0.19 \pm 0.07^{+0.02}_{-0.01} \text{ ps}^{-1} \]

\[\phi_s = -0.57^{+0.24}_{-0.30} \pm 0.07 \text{ rad} \]

\[\Delta m_s \equiv 17.77 \text{ ps}^{-1} \text{ fixed} \]

\[\delta_1 = -0.46 \text{ Gaussian constrained} \]

\[\delta_2 = 2.92 \text{ Gaussian constrained} \]

New physics or only fluctuations?

To be continued...
CPV in the decay $B_s \rightarrow J/\psi \phi$? The results

Results. hep-ex/0802.2255, Submitted to PRL

- $\Delta \Gamma_s = 0.19 \pm 0.07^{+0.02}_{-0.01} \text{ ps}^{-1}$
- $\phi_s = -0.57^{+0.24}_{-0.30}^{+0.07}_{-0.02} \text{ rad}$
- $\Delta m_s \equiv 17.77 \text{ ps}^{-1}$ fixed
- $\delta_1 = -0.46$ Gaussian constrained
- $\delta_2 = 2.92$ Gaussian constrained

New physics or only fluctuations?
To be continued…
$\Delta \Gamma_s$ from $\text{Br}(B_s \rightarrow D_s^{(*)} D_s^{(*)})$
In the B_s system, $\Delta \Gamma_s = \Gamma_L - \Gamma_H = 2|\Gamma_{12}| \cos \phi_s$.

From previous experiments, $\Delta \Gamma_s$ is sizable.

From theory $D_s^{(*)} D_s^{(*)}$ is purely CP even.

$$2\text{Br}(B_s \rightarrow D_s^{(*)} D_s^{(*)}) = \Delta \Gamma_s^{CP} \left[\frac{1+\cos \phi_s}{\Gamma_L} + \frac{1-\cos \phi_s}{\Gamma_H} \right]$$

In SM ($\phi_s = 0$)

$$\frac{\Delta \Gamma_s}{\Gamma_s} \approx \frac{2\text{Br}(B_s \rightarrow D_s^{(*)} D_s^{(*)})}{1 - \text{Br}(B_s \rightarrow D_s^{(*)} D_s^{(*)})}$$

We look for $D_s \rightarrow \phi_1 \pi$; $D_s \rightarrow \phi_2 \mu \nu$; $\phi_i \rightarrow K^+ K^-$

D0 Run II Preliminary (2.8 fb$^{-1}$)
\[\Delta \Gamma_s \text{ from } \text{Br}(B_s \to D_s^{(*)} D_s^{(*)}) \]

\[
\frac{N(B_s \to D_s^{(*)} D_s^{(*)})}{N(B_s \to D_s^{(*)} \mu \nu)} = 2R \frac{\epsilon(B_s \to D_s^{(*)} D_s^{(*)})}{\epsilon(B_s \to D_s^{(*)} \mu \nu)}
\]

\[R \equiv \frac{\text{Br}(B_s \to D_s^{(*)} D_s^{(*)}) \text{Br}(D_s \to \phi \mu \nu) \text{Br}(\phi \to K^+ K^-)}{\text{Br}(B_s \to D_s^{(*)} \mu \nu)} \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N(B_s \to D_s^{()} D_s^{()}))</td>
<td>27.5 ± 9.8</td>
</tr>
<tr>
<td>(N(B_s \to D_s^{(*)} \mu \nu))</td>
<td>28680 ± 288</td>
</tr>
<tr>
<td>(\epsilon(B_s \to D_s^{()} D_s^{()}))</td>
<td>8.7 ± 1.5%</td>
</tr>
<tr>
<td>(\epsilon(B_s \to D_s^{(*)} \mu \nu))</td>
<td></td>
</tr>
<tr>
<td>(\text{Br}(D_s \to \phi \mu \nu))</td>
<td>0.0249 ± 0.0028</td>
</tr>
<tr>
<td>(\text{Br}(\phi \to K^+ K^-))</td>
<td>0.493 ± 0.006</td>
</tr>
<tr>
<td>(\text{Br}(B_s \to D_s^{(*)} \mu \nu))</td>
<td>0.079 ± 0.024</td>
</tr>
</tbody>
</table>

D0 Run II Preliminary (2.8 fb⁻¹)

Candidates / (0.003 GeV/c²)

m(\(\phi \pi \)) (GeV/c²)

D0 Run II Preliminary (2.8 fb⁻¹)

Candidates / (0.0045 GeV/c²)

m(KK) (GeV/c²)
Using all these inputs:

\[
\text{Br}(B_s \rightarrow D_s^{(*)} D_s^{(*)}) = 0.042 \pm 0.015\text{(stat)} \pm 0.017\text{(syst)}
\]

\[
\frac{\Delta \Gamma_s}{\Gamma_s} = 0.088 \pm 0.030\text{(stat)} \pm 0.036\text{(syst)}
\]

In good agreement with

\[
\frac{\Delta \Gamma_s}{\Gamma_s} |_{SM}^{\text{exp}^a} = 0.096 \pm 0.048
\]

\[
\frac{\Delta \Gamma_s}{\Gamma_s} |_{SM}^{\text{theory}^b} = 0.127 \pm 0.024
\]

\[^a\text{Heavy Flavor Averaging Group}\]
\[^b\text{Lenz,Nierste hep-ph/0612167}\]

Conclusions

- \(\text{Br}(B_s \rightarrow D_s^{(*)} D_s^{(*)})\) is a promising method for \(\Delta \Gamma_s\)
- First experimental evidence for \(\Delta \Gamma_s \neq 0\).
- Significance 3.7\(\sigma\)
Using all these inputs:

\[\text{Br}(B_s \rightarrow D_s^{(*)} D_s^{(*)}) = 0.042 \pm 0.015(\text{stat}) \pm 0.017(\text{syst}) \]

\[\Delta \Gamma_s / \Gamma_s = 0.088 \pm 0.030(\text{stat}) \pm 0.036(\text{syst}) \]

In good agreement with

\[\frac{\Delta \Gamma_s}{\Gamma_s} \bigg|_{\text{exp}^a}^{\text{SM}} = 0.096 \pm 0.048 \]

\[\frac{\Delta \Gamma_s}{\Gamma_s} \bigg|_{\text{theory}^b}^{\text{SM}} = 0.127 \pm 0.024 \]

\[^a\text{Heavy Flavor Averaging Group} \]

\[^b\text{Lenz,Nierste hep-ph/0612167} \]

Conclusions

- \(\text{Br}(B_s \rightarrow D_s^{(*)} D_s^{(*)}) \) is a promising method for \(\Delta \Gamma_s \)
- First experimental evidence for \(\Delta \Gamma_s \neq 0 \).
- Significance 3.7\(\sigma \)
In good agreement with

\[
\frac{\Delta \Gamma_s}{\Gamma_s} \bigg|_{\text{exp}^a}^{\text{SM}} = 0.096 \pm 0.048
\]

\[
\frac{\Delta \Gamma_s}{\Gamma_s} \bigg|_{\text{theory}^b}^{\text{SM}} = 0.127 \pm 0.024
\]

\^a Heavy Flavor Averaging Group

\^b Lenz,Nierste hep-ph/0612167

Conclusions

- \(\text{Br}(B_s \to D_s^{(*)} D_s^{(*)}) \) is a promising method for \(\Delta \Gamma_s \)
- First experimental evidence for \(\Delta \Gamma_s \neq 0 \).
- Significance 3.7\(\sigma \)
Direct CPV in the decay $B^\pm \rightarrow J/\psi K^{\pm}$?
Direct CP-Violation in the decay $B^\pm \to J/\psi K^\pm$?

The decay $B^\pm \to J/\psi K^\pm$ goes via two diagrams:

Their interference produces small asymmetry. We define the charge asymmetry in this decay as

$$A_{CP} = \frac{N(B^+ \to J/\psi K^+) - N(B^- \to J/\psi K^-)}{N(B^+ \to J/\psi K^+) + N(B^- \to J/\psi K^-)}$$

From the SM $A_{CP}^{SM} = 0.003$, but $A_{CP}^{NP} = 0.01$

The measurement of A_{CP} is an important way of constraining those new physics models which predict an enhanced value of this asymmetry.

2. S. Hou et al. hep-ph/0605080
We divide the $J/\psi K$ sample into categories according to solenoid polarity $\beta(=\pm1)$, sign of the kaon pseudorapidity $\gamma(=\pm1)$, and kaon charge $q(=\pm1)$. For each $q\beta\gamma$ subsample:

$$n_{q\beta\gamma}^{N_{\text{sig}}\epsilon^\beta} \propto (1 + qA) (1 + q\gamma A_{fb}) (1 + \gamma A_{det}) (1 + q\beta\gamma A_{q\beta\gamma}) (1 + q\beta A_{q\beta}) (1 + \beta\gamma A_{\beta\gamma})$$

- ϵ^β: fraction of integrated luminosity
- A: the charge asymmetry to be measured
- A_{fb}: forward-backward asymmetric B production
- A_{det}: detector asymmetry for kaons
- $A_{q\beta\gamma}$: change in the acceptance of kaons of different sign bent by the solenoid in different directions
- $A_{q\beta}$: detector asymmetry for the change in the kaon reconstruction efficiency
- $A_{\beta\gamma}$: any detector-related f-w asym. that remain after the solenoid polarity flip.

<table>
<thead>
<tr>
<th>Asymmetry</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{sig}</td>
<td>$40,127 \pm 243$</td>
</tr>
<tr>
<td>ϵ^+</td>
<td>0.506 ± 0.003</td>
</tr>
<tr>
<td>A</td>
<td>-0.0070 ± 0.0060</td>
</tr>
<tr>
<td>A_{fb}</td>
<td>0.0013 ± 0.0060</td>
</tr>
<tr>
<td>A_{det}</td>
<td>-0.0033 ± 0.0060</td>
</tr>
<tr>
<td>$A_{q\beta\gamma}$</td>
<td>-0.005 ± 0.006</td>
</tr>
<tr>
<td>$A_{q\beta}$</td>
<td>0.0001 ± 0.0060</td>
</tr>
<tr>
<td>$A_{\beta\gamma}$</td>
<td>-0.0030 ± 0.006</td>
</tr>
</tbody>
</table>
Direct CP-Violation in the decay $B^\pm \rightarrow J/\psi K^\pm$

- Take account for the momentum dependence of the kaon cross-section, $A_K = -0.0145 \pm 0.0010$

$$A_{CP}(B^+ \rightarrow J/\psi K^+) = A - A_K = +0.0075 \pm 0.0061\,(\text{stat}) \pm 0.0027\,(\text{syst})$$

This measurement is consistent with the WA value\(^4\): $A_{CP} = +0.015 \pm 0.017$

The achieved precision is of the same level as the expected deviations predicted by the SM.

\(^4\text{Particle Data Group}\)
We have shown four measurements related with CP-violation and mixing in B-meson decays at DØ.

Using the combined tagging methods, as a preliminary result from DØ
$\Delta m_s = 18.53 \pm 0.93\text{(stat)} \pm 0.30\text{(syst)} \text{ ps}^{-1}$. Significance 2.9σ.

Consistent with CDFa: $\Delta m_s = 17.77 \pm 0.10\text{(stat)} \pm 0.07\text{(syst)} \text{ ps}^{-1}$.

From the tagged analysis of $B_s \to J/\psi\phi$, we found a possible indication of CPV by measuring the phase $\phi_s = -0.57^{+0.24+0.07}_{-0.30-0.02} \text{ rad}$.

The uncertainty on ϕ_s is statistically dominated. More data should be processed to reduce this uncertainty.

From $B_s \to D_s^{(*)} D_s^{(*)}$, we have the first experimental evidence for $\Delta\Gamma_s \neq 0$.
$\Delta\Gamma_s/\Gamma_s = 0.088 \pm 0.030\text{(stat)} \pm 0.036\text{(syst)}$

Consistent with the SM prediction and previous experimental measurements that do not allow CPV.

Direct CPV in the decay $B^+ \to J/\psi K^+$ is consistent with zero.

The uncertainty on this asymmetry is of the order of the SM prediction.

Backup
Systematic uncertainties for $B_s \to J/\psi \phi$

<table>
<thead>
<tr>
<th>Source</th>
<th>$\bar{\tau}_s$ (ps)</th>
<th>$\Delta \Gamma_s$ (ps$^{-1}$)</th>
<th>ϕ_s (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptance</td>
<td>± 0.003</td>
<td>± 0.003</td>
<td>± 0.005</td>
</tr>
<tr>
<td>Flavor purity estimate</td>
<td>± 0.001</td>
<td>± 0.001</td>
<td>± 0.01</td>
</tr>
<tr>
<td>Background model</td>
<td>$+0.003$</td>
<td>± 0.02</td>
<td>± 0.02</td>
</tr>
<tr>
<td>Δm_s input</td>
<td>± 0.01</td>
<td>± 0.001</td>
<td>$+0.06, -0.01$</td>
</tr>
</tbody>
</table>
Systematic uncertainties for $B_s \rightarrow D_s^{(*)} D_s^{(*)}$

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Br}(B_s \rightarrow D_s^{(*)} \mu \nu)$</td>
<td>0.0127</td>
</tr>
<tr>
<td>$\text{Br}(D_s \rightarrow \phi \mu \nu)$</td>
<td>0.0047</td>
</tr>
<tr>
<td>$\text{Br}(\phi \rightarrow K^+ K^-)$</td>
<td>0.0006</td>
</tr>
<tr>
<td>Efficiencies ratio</td>
<td>0.0072</td>
</tr>
<tr>
<td>Fitting procedure</td>
<td>0.0071</td>
</tr>
</tbody>
</table>