

Hyperon Physics from Lattice QCD

Huey-Wen Lin Jefferson Lab

BEACH 2008 University of South Carolina, Columbia, SC 2008 June 27

- Lattice QCD 101
- Hyperon spectroscopy
- Hyperon axial charge couplings
- Hyperon EM form factors
- Strangeness in the nucleon
- Hyperon semileptonic decays

Lattice QCD

- Physical observables are calculated from the path integral $\langle 0|O(\overline{\psi},\psi,A)|0\rangle = \frac{1}{Z} \int [dA] [d\overline{\psi}] [d\psi] O(\overline{\psi},\psi,A) e^{i \int d^4x \mathcal{L}^{QCD}(\overline{\psi},\psi,A)}$
- Strong coupling regions: expansion no longer converge
- Lattice QCD is a discrete version of continuum QCD theory

- Numerical integration to calculate the path integral
- Take $a \to 0$ and $V \to \infty$ in the continuum limit

Lattice Actions

Symanzik Improvement

- Order-by-order in a improvement of the action and operators
- Systematic error due to discretization under control

Gauge actions

- Most gauge actions used today are $O(a^2)$ improved
- Small discretization effects (~O(Λ³_{QCD}a³)) due to gauge choices

Fermion actions

- Most fermion actions are only O(a) improved $(O(\Lambda_{QCD}^2 a^2))$
- Differences are benign once all systematics are included
- Different choices of fermion action are confined by limits of computational and human power + by personal interest
- Commonly known actions: Domain-wall fermions, overlap fermions, Wilson/Clover fermions, twisted-Wilson fermions

Not-So-Conventional Choices...

Mixed Action

- Example: Staggered sea with domain-wall valence
- Staggered: Relatively cheap for dynamical fermions but nightmare for baryonic operators
- DWF: chiral symmetry preserved on finite a; good for spin physics and weak matrix elements

Anisotropic Wilson/Clover

- Wilson/Clover fermions with broken space/time symmetry
- Lattice spacing $a_t < a_{x,y,z}$
- Complicated but useful for excited-state physics

Computational Requirements

- In 1970, Wilson started off by writing down the first actions
- Why haven't we solved QCD yet?
 - Progress is limited by computational resources
 - But assisted by advances in algorithms
- Trace back to the my academic grandfather's generation

To calculate stellar radiative transfer equations, T.D. Lee uses an "analog computer"

Computational Requirements

2007: The 13 Tflops cluster at Jefferson Lab

Other joint lattice resources within the US: Fermilab, BNL Non-lattice resources open to USQCD: ORNL, LLNL, ANL

Computational Requirements

- Gauge generation costs with the latest algorithms scale like Cost factor: a^{-6} , L^5 , M_{π}^{-3}
- Most of the major 2+1-flavor gauge ensembles:

 $M_{\pi} < 300 {\rm ~MeV}$

 Chiral domain-wall fermions (DWF) at large volume (6 fm) at physical pion mass may be expected in 2011

Norman Christ, LAT2007

- PACS-CS (Clover action) report preliminary results at $M_{\pi} \sim 150$ MeV (but small volume) at Lat@ECT (2008 May)
- But for now....

need a pion mass extrapolation $M_{\pi} \rightarrow (M_{\pi})_{\text{phys}}$ (use chiral perturbation theory, if available)

Systematic Errors

Currently, not at the physical pion-mass point XPT uncertainty (parameters used in XPT, etc.)

Finite lattice spacing

- Exact: Do multiple lattice-spacing calculations and extrapolate to a = 0
- Otherwise, estimate according to the level of improvement for the gluon and fermion action and operators

Finite-volume effect

- Exact: Do multiple volume calculations and extrapolate to $V = \infty$
- Otherwise, estimate according to previous work
- Or apply finite-volume XPT to try to correct FVE

Other systematics

For example: if fitting is involved, what is the dependence on the fit range?

Hyperon Resonances

in collaboration with

David Richards, and other members in LHPC

Spectroscopy on Lattice

Calculate two-point Green function

$$\begin{array}{lcl} \langle O \rangle &=& \frac{1}{Z} \int [dU] [d\psi] [d\overline{\psi}] e^{-S_F(U,\psi,\overline{\psi}) - S_G(U)} O(U,\psi,\overline{\psi}) \\ &=& \frac{1}{Z} \int [dU] \det M e^{-S_G(U)} O(U) \end{array}$$

- > Spin projection
 - $\sum_{\alpha,\beta} \Gamma^{\alpha,\beta} \langle J(X_{\rm snk}) J(X_{\rm src}) \rangle_{\alpha,\beta}$

Momentum projection

Two-point correlator

$$\Gamma_{AB}^{(2),T}(t;\vec{p}) = \sum_{n} \frac{E_n + M_n}{2E_n} Z_{n,A} Z_{n,B} e^{-E_n(\vec{P})t}$$
Exp decay

At large enough *t*, the ground-state signal dominates

Operator Design

Classify states according to symmetry properties Projection onto irreducible representations of finite groups

Number of operators:

N^+ Operator type	G_{1g}	H_g	G_{2g}
Single-Site	3	1	0
Singly-Displaced	24	32	8
Doubly-Displaced-I	24	32	8
${\rm Doubly-Displaced-L}$	64	128	64
Triply-Displaced-T	64	128	64
Total	179	321	144

S. Basak et al., Phys. Rev. D72, 094506 (2005)

Variational Method

Construct the correlator matrix

$$C^{m,n}_{\Lambda}(t) = \sum_{\vec{x}} \sum_{\lambda} \langle 0 \mid B^{\Lambda,m}_{\lambda}(\vec{x},t) \bar{B}^{\Lambda,n}_{\lambda}(0) \mid 0 \rangle$$

Construct the matrix

 $C_{i j}(t) = \langle 0 \mid \mathcal{O}_i(t)^{\dagger} \mathcal{O}_j(0) \mid 0 \rangle$

Solve for the generalized eigensystem of

 $C(t)\psi = \lambda(t,t_0)C(t_0)\psi$

with eigenvalues

$$\lambda_n(t, t_0) = e^{-(t-t_0)E_n} (1 + \mathcal{O}(e^{-|\delta E|(t-t_0)}))$$

C. Michael, Nucl. Phys. B 259, 58 (1985) M. Lüscher and U. Wolff, Nucl. Phys. B 339, 222 (1990)

Does It Work?

Nucleon on anisotropic Wilson action (quenched), hep-lat/0609019 $V = 12^3 \times 48$, $a_s \sim 0.1$ fm, $a_s/a_t \sim 3$, $M_{\pi} \sim 700$ MeV 2.8 0.7 K_{1,13}(2700) K_{1,13}(2700) (x2) K_{1,13}(2700) (x2) I_{1,11}(2600) I_{1.11}(2600) l_{1,11}(2600) (x2) 2.4 0.6 (2250) (x2) H₄₀(2220) H₄₀(2220) (x2) (2200)D₁₅(220 G₁₇(2190) P₁₁(2100) S, (2090) D₁₂(2080) 0.5 F₁₇(1990) F₁₅(1680 1.6 Dec(1675) Dec(1675) ш 0.4 в 0. (1520 P₁₁(1440) 1.2 0.3 0.8 0.2 Lat (a_{t}^{-1}) Exp (GeV) 0.1 0.4 G_{1g} G_{2u} G_{1g} $\rm G_{2g}$ G_{1u} Ha G_{2a} Η., Ha G_{1u} Η., G_{2u} $N_f = 2$ light and strange baryons are on the way $N_f = 2 + 1$ gauge generation is almost complete

Full QCD?

- Examples of a $N_f = 2+1$ study
 Isotropic mixed action: DWF on staggered sea
 $M_{\pi} \sim 300-750$ MeV, $L \sim 2.5$ fm
 - Number of operators:

Flavor	$G_{1g/u}(2)$	$H_{g/u}(4)$
N	3	1
Δ	1	2
Λ	4	1
\sum	4	3
Ξ	4	3
Ω	1	2

This calculation:

Three quarks in a baryon located at a single site

I	4	
	$\frac{21}{2}$	$G_1\oplus 2\ G_2\oplus 4\ \mathrm{H}$
	$\frac{23}{2}$	$2\ G_1\oplus 2\ G_2\oplus 4\ H$

Non-Strange Baryons

Singly Strange Baryons

Axial Coupling Constants

in collaboration with

Kostas Orginos

Axial Couplings and Form Factors

$e \xrightarrow{k'} V$ $N \xrightarrow{p} p'$ $N \xrightarrow{p'} N$

For octet baryons

$$\langle B | V_{\mu} | B \rangle(q) = \overline{u}_B(p') \left[\gamma_{\mu} F_1(q^2) + \sigma_{\mu\nu} q_{\nu} \frac{F_2(q^2)}{2M_B} \right] u_B(p)$$

$$\langle B | A_{\mu}(q) | B \rangle = \overline{u}_B(p') \left[\gamma_{\mu} \gamma_5 G_A(q^2) + \gamma_5 q_{\nu} \frac{G_P(q^2)}{2M_B} \right] u_B(p)$$

P

Green Functions

Three-point function with connected piece only

$$C_{3pt}^{\Gamma,\mathcal{O}}\left(\vec{p},t,\tau\right) = \sum_{\alpha,\beta} \Gamma^{\alpha,\beta} \langle J_{\beta}\left(\vec{p},t\right) \mathcal{O}(\tau) \overline{J}_{\alpha}\left(\vec{p},0\right) \rangle$$
$$O: \mathbf{V}_{\mu} = q^{-} \gamma_{\mu} q, \ \mathbf{A}_{\mu} = q^{-} \gamma_{\mu} \gamma_{5} q, \ J = \epsilon^{abc} [q_{1}^{a\mathrm{T}}(x) C \gamma_{5} q_{2}^{b}(x)] q_{1}^{c}(x)$$

Two topologies:

• Isovector quantities O^{u-d} : disconnected diagram cancelled

Axial Coupling Constants: $g_{\Xi\Xi}$ and $g_{\Sigma\Sigma}$

- Define $\langle B | A_{\mu}(q) | B \rangle = \overline{u}_B(p') \left[\gamma_{\mu} \gamma_5 G_A(q^2) + \gamma_5 q_{\nu} \frac{G_P(q^2)}{2M_B} \right] u_B(p) e^{-iq \cdot x}$
- Has applications such as hyperon scattering, non-leptonic decays, ...
- Cannot be determined by experiment
- Existing theoretical predictions:
 - Chiral perturbation theory

 $0.35 \leq g_{\Sigma\Sigma} \leq 0.55$ $0.18 \leq -g_{\Xi\Xi} \leq 0.36$

M. J. Savage et al., Phys. Rev. D55, 5376 (1997);

 \rightarrow Large- N_c

 $0.30 \leq g_{\Sigma\Sigma} \leq 0.36 \qquad 0.26 \leq -g_{\Xi\Xi} \leq 0.30$

R. Flores-Mendieta et al., Phys. Rev. D58, 094028 (1998);

- Loose bounds on the values
- Lattice QCD can provide substantial improvement
 - Pion mass: 350–750 MeV on mixed action

HWL and K. Orginos, arXiv:0712.1214

Axial Coupling Constants: $g_{\Xi\Xi}$ and $g_{\Sigma\Sigma}$

- Simultaneous SU(3) fit
 - SU(3) chiral perturbation theory (with 8 parameters) which fails to describe the data

• Simplified parametrization chiral form using $x = (m_K^2 - m_\pi^2)/(4\pi f_\pi^2)$

Global coupling constants: D = 0.715(6)(29) & F = 0.453(5)(19)

Axial Coupling Constants: $g_{\Xi\Xi}$ and $g_{\Sigma\Sigma}$

Hyperon Form Factors

in collaboration with

Kostas Orginos

Electromagnetic Form Factors

Two definitions

♦ Dirac and Pauli form factors F_1 , F_2

 $\langle N | V_{\mu} | N \rangle(q) = \overline{u}_{N}(p') \left[\gamma_{\mu} F_{1}(q^{2}) + \sigma_{\mu\nu} q_{\nu} \frac{F_{2}(q^{2})}{2m} \right] u_{N}(p)$ At $Q^{2} = 0$, $F_{1p}(0) = 1, F_{2p}(0) = \kappa_{p}, F_{1n}(0) = 0, F_{2n}(0) = \kappa_{n}$

Sachs form factors G_E, G_M G_E(q²) = F₁(q²) + $\frac{q^2}{(2M_N)^2}F_2(q^2)$ G_M(q²) = F₁(q²) + F₂(q²) . At Q² = 0, G_{Ep}(0) = 1, G_{Mp}(0) = µ_p, G_{En}(0) = 0, G_{Mn}(0) = µ_n

Isovector quantities only

Q^2 -Dependence of Form Factors

Charge Radii

Electric charge radii
$$\langle r_E^2 \rangle = (-6) \frac{d}{dQ^2} \left(\frac{G_E(Q^2)}{G_E(0)} \right) |_{Q^2 = 0}$$

- ♦ Smaller strange contribution to charge radii ← shorter Compton wavelength
- u/d quark contribution seems to be independence of the environmental baryon
- Could provide predictions for Σ^+ and Ξ^-

Charge Radii

$$\Rightarrow \text{ Electric charge radii } \langle r_E^2 \rangle = (-6) \frac{d}{dQ^2} \left(\frac{G_E(Q^2)}{G_E(0)} \right) |_{Q^2 = 0}$$

Comparison between strange quark contributions: insensitive to environmental baryon

Magnetic Moments

• Magnetic moment $\mu_B = G_{M,B}(0) \times M_N/M_B$ dipole extrap. $G_{M,B}$

Quark Contribution

Baryon Contribution

Strange Magnetic Moment of Nucleon

Purely sea-quark effect

First strange magnetic moment was measured by SAMPLE $G_M^s(Q^2 = 0.1 \ GeV^2) = 0.23(37)(25)(29)$

B. Mueller et al. (SAMPLE) Phys. Rev. Lett. 78, 3824 (1997)

New data, still being collected, suggests the value is non-zero.

HAPPEX and G0 collaborations at Jefferson Lab, SAMPLE at MIT-BATES, and A4 at Mainz

Lattice calculations

 $\langle B | V_{\mu} | B \rangle(q) = \overline{u}_B(p') \left[\gamma_{\mu} F_1(q^2) + \sigma_{\mu\nu} q_{\nu} \frac{F_2(q^2)}{2M_B} \right] u_B(p)$

The disconnected diagram is a must.

- Done in quenched approximation
 - Direct: Noisy (\mathbb{Z}_2) estimator Kentucky Fi
 -0.28(10) to +0.05(6)
 - Indirect: Charge symmetry -0.046(19)

Kentucky Field Theory group (1997–2001)

```
Adelaide-JLab group (2006)
```

Strange Magnetic Moment of Nucleon

- Two methods used in LQCD
 - Direct: all-to-all approach or noise estimators
 - Indirect: charge symmetry assumption (for example, dⁿ = u^p):

Charge symmetry and Strangeness

The strangeness contribution in nucleon is

$$G_{M}^{s} = \left(\frac{{}^{l}R_{d}^{s}}{1 - {}^{l}R_{d}^{s}}\right)\left[2p + n - \frac{u^{p}}{u^{\Sigma}}(\Sigma^{+} - \Sigma^{-})\right]$$

$$G_{M}^{s} = \left(\frac{{}^{l}R_{d}^{s}}{1 - {}^{l}R_{d}^{s}}\right)\left[p + 2n - \frac{u^{n}}{u^{\Xi}}(\Xi^{0} - \Xi^{-})\right] \quad \text{with} \quad {}^{l}R_{d}^{s} \equiv {}^{l}G_{M}^{s}/{}^{l}G_{M}^{d}$$

Taken from Exp Cal. in LQCD

D. B. Leinweber, Phys. Rev. D 53, 5115 (1996).

Strange Magnetic Moment of Nucleon

- Dipole-form extrapolation to q² = 0 to obtain µ_B
 Inputs from p, n for Σ⁺ and Ξ⁻ G^s_M = (^lR^s_d)[-1.033 - ^{uⁿ}/_{u^Ξ}(-0.599)]µ_N
- Magnetic-moment ratios (linear extrapolation, for now)

Strange Electric Moment of Nucleon

- $\clubsuit G_E^s$ is proportional to $Q^2 \langle r^2 \rangle^s$
- $\text{Charge symmetry: D. B. Leinweber et al., Phys. Rev. Lett. 94, 212001 (2004).} \\ \langle r^2 \rangle^s = \frac{r_d^s}{1 r_d^s} \left[2 \langle r^2 \rangle^p + \langle r^2 \rangle^n \langle r^2 \rangle^u \right] \qquad r_d^s = 0.16(4)$

u-quark form contribution of vector form factors

World Plot at $Q^2 \sim 0.1 \text{ GeV}^2$

Hyperon Semileptonic Decays

in collaboration with

Kostas Orginos

Hyperon Decays

• Matrix element of the hyperon β -decay process $B_1 \rightarrow B_2 e^- \overline{\nu}$

$$\mathcal{M} = \frac{G_s}{\sqrt{2}} \overline{u}_{B_2} (O^{\mathrm{V}}_{\alpha} + O^{\mathrm{A}}_{\alpha}) u_{B_1} \overline{u}_e \gamma^{\alpha} (1 + \gamma_5) v_{\nu}$$

with

Hyperon Decay Experiments

- Experiments: CERN WA2, Fermilab E715, BNL AGS, Fermilab KTeV, CERN NA48
- Summary N. Cabibbo et al. 2003 with f_2/f_1 and f_1 at the SU(3) limit

Decay	Rate (µs-1)	g_1/f_1	V_{us}
$\Lambda \to p e^- \overline{\nu}$	3.161(58)	0.718(15)	0.2224 ± 0.0034
$\Sigma^- \to n e^- \overline{\nu}$	6.88(24)	-0.340(17)	0.2282 ± 0.0049
$\Xi^- \to \Lambda e^- \overline{\nu}$	3.44(19)	0.25(5)	$0.2367\ \pm\ 0.0099$
$\Xi^0 ightarrow \Sigma^+ e^- \overline{\nu}$	0.876(71)	1.32(+.22/18)	0.209 ± 0.027
Combined		—	0.2250 ± 0.0027

PDG 2006 number

• Better g_1/f_1 from lattice calculations?

$|V_{us}|$ from $K_{\ell 3}$ Decay

♦ Summary of $K_{\ell 3}$ calculations

🔷 Use common

 $|f_+V_{us}| = 0.2169(9)$ from PDG 2006

Group	$N_{\rm f}$	$S_{ m f}$	$M_{\pi} (\text{GeV})$
SPQcdR	0	Wilson	0.500 - 1.000
JLQCD	2	Clover	$0.440 – 0.960^{*}$
RBC	2	DWF	0.475 – 0.700
HPQCD	2 + 1	Staggered	0.500 - 0.700
RBC/UKQCD	2 + 1	DWF	0.390 - 0.700

$|V_{us}|$ from Leptonic Decays

• $K_{\mu 2}$ and $\pi_{\mu 2}$ decays

$$\underbrace{\left|V_{us}\right|}{\left|V_{ud}\right|}^{2} = \left[\left(\frac{f_{K}}{f_{\pi}}\right)^{2} \frac{M_{K}\left(1 - m_{\mu}^{2}/M_{K}^{2}\right)^{2}}{M_{\pi}\left(1 - m_{\mu}^{2}/M_{\pi}^{2}\right)^{2}} \left(1 + \frac{\alpha}{\pi}\left(C_{K} - C_{\pi}\right)\right)\right]^{-1} \frac{\Gamma(K \to \mu\bar{\nu}_{\mu})}{\Gamma(\pi \to \mu\bar{\nu}_{\mu})}$$

♦ MILC collaboration (staggered, *C*. Aubin et al., 2004) f_K/f_π =1.210(4)(13)

• W. Marciano, 2004 $|V_{us}| = 0.2219(25)$

• Other full-QCD f_K/f_{π} available since 2004 RBC+UKQCD DWF: $f_K/f_{\pi} = 1.24(2)$ MILC 2006: $f_K/f_{\pi} = 1.208(2)(^{+7}/_{-14})$

$|V_{us}|$ from Hyperons Decays

Two quenched calculations, different channels

No systematic error estimate from quenching effects!

Huey-Wen Lin — BEACH 2008

Ademollo-Gatto Theorem

Chiral extrapolation:

SU(3) symmetry-breaking Hamiltonian

$$H' = \frac{1}{\sqrt{3}} \left(m_s - \frac{m_d + m_u}{2} \right) \overline{q} \lambda^8 q$$

There is no first-order correction O(H') to $f_1(0)$; thus

$$f_1(0) = f_1^{SU(3)}(0) + O({H'}^2)$$

Common choice of observable for H': M_K² - M_π²
Step I: R(M_K, M_π) = 1 - |f'(0)|/(a⁴(M²_K - M²_π)²)

• Step II: $R(M_K, M_\pi) = b_0 + b_1 a^2 (M_K^2 + M_\pi^2)$

 \mathbf{P} Obtain $|V_{us}|$ from

$$\Gamma = G_F^2 \left[|V_{us}| \right]^2 \frac{\Delta m^3}{60\pi^3} (1 + \delta_{rad})$$

$$\times \left[\left(1 - \frac{3}{2}\beta \right) \left(|f_1|^2 + |g_1|^2 \right) + \frac{6}{7}\beta^2 \left(|f_1|^2 + 2|g_1|^2 + \operatorname{Re}(f_1 f_2^{\star}) + \frac{2}{3}|f_2^2| \right) + \delta_{q^2} \right]$$

with g_1/f_1 (exp) and f_2/f_1 (SU(3) value)

Simultaneous Fit

Induced PS Form Factor f_3

Weak Electric Form Factor g_2

Summary and Outlook

- What we can provide at the moment ~ 300—350 MeV pion
 - Hyperon spectroscopy: spin predictions from mass ordering
 - Sigma and cascade axial coupling constants and form factors
 - Semileptonic decay form factors
 - Predictions for those quantities which cannot be measured
- In the near future...
 - ♦ Pion mass ≪ 300 MeV
 - Spectroscopy: orbital/radial excited states
 - \clubsuit Complete octet structure studies and decays, including Λ , Σ^0
 - Duplet-octet transition form factors
- Not enough time to mention...
 - Hadron interactions (π - π , π -K, N-N, N-Y scattering lengths)
 - Potentials and forces

Stay tuned on the latest lattice calculations

Huey-Wen Lin — BEACH 2008