Future Hadronic Cross-Section measurements and the MIPP Upgrade Experiment

Nickolas Solomey
Wichita State University

• Review the status of hadronic shower simulation models
 » DPMJET, Mars, Geant4 models
 » Status of particle production data
• Difficulties in using shower simulation models in experiments such as MINOS, MiniBoone, Atmospheric neutrino production, Hadron Calorimetry (ILC in particular)
• Review plans to obtain higher quality data—MIPP Upgrade FNAL-P-960
• Ways to use new data directly in simulators—Hadronic Interaction libraries
• Tagged Neutral beams
We have a theory of the strong interaction—in theory

- Why study non-perturbative QCD? Answer: We do not know how to calculate a single cross section in non-perturbative QCD! This is >99% of the total QCD cross section. Perturbative QCD has made impressive progress. But it relies on structure functions for its calculations, which are non-perturbative and derived from data.
- Feynman scaling, KNO scaling, rapidity plateaus are all violated. We cannot predict elastic cross sections, diffractive cross sections, let alone inclusive or semi-inclusive processes. Regge “theory” is in fact a phenomenology whose predictions are flexible and can be easily altered by adding more trajectories.
- Most existing data are old, low statistics with poor particle id.
- QCD theorist states- We have a theory of the strong interaction and it is quantum chromodynamics. Experimentalist asks- what does QCD predict? Almost as bad as the folks who claim string theory is the theory of everything! Experimentalist asks-what does it predict?
Elastic scattering

- The entire strong interaction problem can be reduced to our ignorance in describing the very simple process of elastic scattering. - By the optical theorem

\[\sigma_{tot} \propto \text{Im}(\text{forward elastic scattering amplitude}) \]

\[\sigma_{tot} \propto s^{\alpha(0)-1} \]

- Where \(\alpha(0) \) is the intercept of the leading Regge trajectory, commonly known as the Pomeron. In the era when total cross sections were thought to asymptote to a constant value, this intercept was taken to be unity. Since it has been shown conclusively that the cross sections rise with energy, this intercept is now thought to be \(\sim 1.095 \).

- This leads to a power law rise in total cross sections, which will eventually violate unitarity-Froissart bound states cross sections should not grow faster than \(\log^2 s \)!
DPMJET-Dual Parton Model Jet

- Two component (soft and hard scattering). Super critical soft and pomerons coupled with triple pomeron scattering for diffraction and hard scattering by QCD improved parton model. Chew, Rosenzweig(76), Hang-Mo et al(75), Capella et al(94), J. Ranft(92)

- Code implementation - Ranft, Engel, Roesler
- Used by itself and also in Fluka.
- Good for Diffractive production as well as multiplicities
- Incorporates Cronin Effect, Glauber model for particle propagation in nuclei. Hadronization of hard partons handled by BAMJET, DECAY or the LUND JETSET.
- Excellent review by J. Ranft PRD51 (95)64.
DPMJET in p-p mode:
simulation of particle production from energy threshold on

proton - proton, $E_{th} = 200 GeV$

<table>
<thead>
<tr>
<th></th>
<th>Exp.</th>
<th>DPMJET-III</th>
</tr>
</thead>
<tbody>
<tr>
<td>charged neg.</td>
<td>7.69 ± 0.06</td>
<td>7.64</td>
</tr>
<tr>
<td>p</td>
<td>2.85 ± 0.03</td>
<td>2.82</td>
</tr>
<tr>
<td>n</td>
<td>1.34 ± 0.15</td>
<td>1.26</td>
</tr>
<tr>
<td>π^+</td>
<td>0.61 ± 0.30</td>
<td>0.66</td>
</tr>
<tr>
<td>π^-</td>
<td>3.22 ± 0.12</td>
<td>3.20</td>
</tr>
<tr>
<td>K^+</td>
<td>2.62 ± 0.06</td>
<td>2.55</td>
</tr>
<tr>
<td>K^-</td>
<td>0.28 ± 0.06</td>
<td>0.30</td>
</tr>
<tr>
<td>Λ</td>
<td>0.18 ± 0.05</td>
<td>0.20</td>
</tr>
<tr>
<td>Λ</td>
<td>0.096 ± 0.01</td>
<td>0.10</td>
</tr>
<tr>
<td>Λ</td>
<td>0.0136 ± 0.004</td>
<td>0.0105</td>
</tr>
</tbody>
</table>
Charged particle multiplicity distribution at 200 GeV cms.

Charged particle pseudorapidity distributions
GEANT4 Parton String Models-Slides from G4 group-D. Wright

- Quark Gluon String model
- Diffractive String Model
- Bertini Cascade Model (Classsical solution to Boltzmann equation on average. No scattering matrix calculated. Vvalid for incident energies 0-10 GeV, for p,n,π)
- Parametrized models
- Allows data-driven models as well
- Excellent Geometry package—Provides widely used framework

- Models split into
 - Strings excitation part
 - String hadronization

- Damaged nucleus passed to either
 - pre-compound model
 - CHIPS for nuclear fragmentation
QGSM - Results - GEANT4

pi- Mg \rightarrow pi+ X , Plab 320 GeV/c

Rapidity $\eta = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$

$P_t^2 [\text{GeV}^2]$
Binary Cascade-Geant4

- Modeling interactions of protons, neutrons, pions with nuclei
- Incident particle kinetic energy 50 MeV - 2GeV
- Extension for light ion reactions
- Wounded nucleus passed to pre-compound model and nuclear de-excitation models.
Binary Cascade - results

$p \text{ Pb} \rightarrow n \text{ X}$
Chiral Invariant Phase Space (CHIPS)-Geant4

- CHIPS is based on homogeneous invariant phase distribution of massless partons

![Graph showing Chiral Invariant Phase Space (CHIPS)-Geant4](image-url)

June 28, 2008
Nickolas Solomey, BEACH 2008
Validation of CHIPS model for pion capture at rest on Carbon

Pion capture on 12C nucleus

- Neutrons: $\langle E_{\text{kin}} \rangle_{e/m} = 79.8 / 67.8$ MeV
- Protons: $\langle E_{\text{kin}} \rangle_{e/m} = 8.7 / 9.8$ MeV
- Deuterons: $\langle E_{\text{kin}} \rangle_{e/m} = 5.2 / 5.4$ MeV
- Tritium: $\langle E_{\text{kin}} \rangle_{e/m} = 2.5 / 1.8$ MeV
- Helium-3: $\langle E_{\text{kin}} \rangle_{e/m} = 0.6 / 0.8$ MeV

$k = (p + E_{\text{kin}})/2$ (MeV)
MARS15 code - Mokhov et al.
FNAL-conf-04/269-AD

- Total and elastic hadron nucleon cross sections described by fits to experimental data. Cross sections for hyperon-nucleon cross sections using Additive Quark model rules. At energies above 5 GeV, agrees well with data.
- Inclusive event generator- Particles described inclusively with each particle carrying a statistical weight depending on the partial multiplicity for that event. Energy and momentum are conserved on average. Inclusive particle production for nuclear interactions above 3 GeV is modeled by weighting the pp cross section by a nuclear modification factor.
- Exclusive Event Generator-Two versions- Cascade-Exciton model CEM03 of Mashnik et al combined with Fermi breakup model, coalescence model and an improved version of the Generalized Evaporation-fission model (GEM2) is used as default for hadron nucleus interactions below 5 GeV. The 2003 version of the Los Alamos Quark Gluon String model LAQGSM03 was implemented for particle and heavy ion projectiles at 10 MeV/A-800 GeV/A.
- Also uses DPMJET3 for the first vertex in the cascade tree.- For very high energies LHC and cosmic rays up to 100 TeV.
Meurer et al - Cosmic ray showers Discontinuity - Gheisha at low energies and QGSJET at higher energies - Simulation of air showers

June 28, 2008 Nickolas Solomey, BEACH 2008
Plethora of models

- No complete theory exists—unlike in QED/EGS case
- A plethora of models exists. Not all can be correct. In fact none can describe all data. All models tuned to single particle inclusive cross sections. We are now asking questions where particle correlations are important—Eg How wide is the shower from a particle.
- So the approach of “Validating models and tuning them with data” will only have limited success. Anytime we open up new territory, we will need to re-validate. Unless we take a new tack, and maximize the use of data and minimize the use of theory in the shower simulation. I will describe this approach towards the end.
Miniboone Pre-existing Production Data—J.Link
FNAL Wine and Cheese

π Production

<table>
<thead>
<tr>
<th>Experiment</th>
<th>P_{beam} (GeV/c)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allaby</td>
<td>19.1</td>
<td>1970</td>
</tr>
<tr>
<td>Cho</td>
<td>12.4</td>
<td>1971</td>
</tr>
<tr>
<td>Marmer</td>
<td>12.3</td>
<td>1969</td>
</tr>
<tr>
<td>Vorontsov</td>
<td>10.1</td>
<td>1983</td>
</tr>
</tbody>
</table>

E910 and HARP

K\(^+\) Production

<table>
<thead>
<tr>
<th>Experiment</th>
<th>P_{beam} (GeV/c)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott</td>
<td>14.6</td>
<td>1992</td>
</tr>
<tr>
<td>Aleshin</td>
<td>9.5</td>
<td>1977</td>
</tr>
<tr>
<td>Allaby</td>
<td>19.1</td>
<td>1970</td>
</tr>
<tr>
<td>Dekkers</td>
<td>18.8, 23.1</td>
<td>1964</td>
</tr>
<tr>
<td>Eichten</td>
<td>24.0</td>
<td>1972</td>
</tr>
<tr>
<td>Lundy</td>
<td>13.4</td>
<td>1965</td>
</tr>
<tr>
<td>Marmer</td>
<td>12.3</td>
<td>1968</td>
</tr>
<tr>
<td>Piroue</td>
<td>2.74</td>
<td>1966</td>
</tr>
<tr>
<td>Vorontsov</td>
<td>10.1</td>
<td>1983</td>
</tr>
</tbody>
</table>

K\(^0\) Production

<table>
<thead>
<tr>
<th>Experiment</th>
<th>P_{beam} (GeV/c)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abe</td>
<td>12</td>
<td>1987</td>
</tr>
</tbody>
</table>

Initially E910 only
Miniboone-Sanford-Wang (SW) parametrization of E910 and HARP compared to other models

The differences are dramatic in the π spectra as well! But the E910 and HARP cross sections determine the correct model, which is very close to MARS.

June 28, 2008

D. Schmitz
Why Hadron Production Is Important to NuMI-slides from S. Kopp

- Two-detector experiment for ν_μ disappearance measurement.
- Agreement 'OK' in ND, within model spread.
- But what should we use as error in predicted beam spectrum? (model correlation?)
Compare Hadron Production Models – S. Kopp

<table>
<thead>
<tr>
<th>Model</th>
<th>$\langle p_T \rangle$ (GeV/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLUKA</td>
<td>0.37</td>
</tr>
<tr>
<td>Sanf.-Wang</td>
<td>0.42</td>
</tr>
<tr>
<td>CKP</td>
<td>0.44</td>
</tr>
<tr>
<td>Malensek</td>
<td>0.50</td>
</tr>
<tr>
<td>MARS – v.14</td>
<td>0.38</td>
</tr>
<tr>
<td>MARS – v.15</td>
<td>0.39</td>
</tr>
<tr>
<td>Fluka 2001</td>
<td>0.43</td>
</tr>
<tr>
<td>Fluka 2005</td>
<td>0.36</td>
</tr>
</tbody>
</table>

June 28, 2008

Nickolas Solomey, BEACH 2008
ND Spectra After Reweighting (VI)-S.Kopp

![Graph showing ND Spectra After Reweighting](image)

- **LE10/0kA**
- **MINOS ND Data**
- **Fluka 2005 $\chi^2=642$**
- **Tuned Hadron Production $\chi^2=115$**

Axes:
- **Y-axis:** CC Events/0.5 GeV/1018 POT
- **X-axis:** Reconstructed E_ν (GeV)
Results (Including >30 GeV) - S. Kopp

Reconstructed Energy (GeV)

Data/MC

Events/bin

LE10/185kA

(other beams fit simultaneously)

(ovflw)

June 28, 2008 Nickolas Solomey, BEACH 2008
Model Predictions: proton-proton at the LHC – Totem Expt-
S.Lami

Predictions in the forward region within the CMS/TOTEM acceptance

June 28, 2008
Nickolas Solomey, BEACH 2008
Hadron Shower Simulator problem

- All neutrino flux problems (NUMI, MiniBoone, K2K, T2K, Nova, Minerva) and all Calorimeter design problems and all Jet energy scale systematics (not including jet definition ambiguities here) can be reduced to one problem - the current state of hadronic shower simulators.
- Timely completion of MIPP upgrade program can help systematics in CMS/ATLAS, CALICE and all neutrino experiments.
- Myth-I Put designed calorimeter in test beam and use the data to tune the simulator - DO experience. You need test beam to test the hardware.
- Myth-II Take test beam data at various incident angles and use it to interpolate -H-matrix experience
- In order to have better simulator, we need to measure event by event data with excellent particle ID using 6 beam species (pi, K, P and antiparticles) off various nuclei at momenta ranging from 1 GeV/c to ~100 GeV/c. MIPP upgrade is well positioned to obtain this data.
- MIPP can help with the nuclear slow neutron problem.
- Current simulators use a lot of "Tuned theory". Propose using real library of events and interpolation.
Discrepancies between hadronic generators

Lack of experimental data and large uncertainties in the calculations, in particular for thick and high Z target materials

Differential distributions for pion production:

→ Thin and thick targets, scan in Z
Discrepancies between hadronic generators - Testing particle production off nitrogen (Be extrapolated)

G. Battistoni

June 28, 2008
HSSW06 benchmark test 60cm Al target - Data from Protvino

Pion data. Blue curve MARS. Green curve PHITS. Kaon data is similar

Monte Carlos disagree with each other and the data!
• You heard in the talk by Prof. H. Meyer the results from the MIPP E907 experiment.
• You also heard from the HARP experiment their status and possible expectations.
• Here I want to present some aspects of the proposed MIPP upgrade experiment P960 and what it plans to achieve.
MIPP
Main Injector Particle Production Experiment (FNAL-E907)

June 28, 2008
Nickolas Solomey, BEACH 2008
The P960 upgrade Proposal

- MIPP one can take data at ~30Hz. The limitation is the TPC electronics which are 1990's vintage. We plan to speed this rate up to 3000Hz using ALTRO/PASA chips developed for the ALICE collaboration.

- Beam delivery rate- We assume the delivery of a single 4 second spill every two minutes from the Main Injector. We assume a 42% downtime of the Main Injector for beam manipulation etc. This is conservative. Using these figures, we can acquire 5 million events per day.

- Jolly Green Giant Coil Replacement- Towards the end of our run, the bottom two coils of the JGG burned out. We have decided to replace both the top and bottom coils with newly designed aluminum coils that have better field characteristics for the TPC drift. The coil order has been placed ($200K).

- Beamline upgrade- The MIPP secondary beamline ran satisfactorily from 5 GeV/c-85 GeV/c. We plan to run it from ~1 GeV/c to 85 GeV/c. The low momentum running will be performed using low current power supplies that regulate better. Hall probes in magnets will eliminate hysteresis effects.

- TPC Readout Upgrade- We have ordered 1100 ALTRO/PASA chips from CERN ($80K). The order had to go in with a bigger STAR collaboration order to reduce overhead. We expect delivery in the new year of tested chipsets.
The P960 upgrade Proposal

- MIPP- Recoil detector- GSI- Darmstadt / KVI Groningen have joined us. They will bring the plastic ball detector (a hemisphere of it) which will serve to identify recoil (wide angle) neutrons, protons and gammas from our targets.
- Triggering system- We propose to replace the MIPP interaction trigger (scintillator/wire chamber) with 3 planes of silicon pixels based on the B-TeV design. Will enable us to trigger more efficiently on low multiplicity events.
- Drift Chamber/ PWC electronics- These electronics (E690/RMH) worked well for the first run. They are old (1990's). RMH will not do 3kHz. We will replace both systems with a new design that utilizes some of the infrastructure we developed for the RICH readout.
- ToF/CKOV readout- Plan to build new readout based on TripT chip (Used by Minerva) and a high resolution TDC chip. Will use the VME readout cards in common with RICH, TPC
- RICH detector and the Beam Cerenkovs will work as is.
- Calorimeter Readout- Switch to FERA ADC’s (PREP).
- DAQ software upgrade- Front end DAQ software needs to be developed. The MIPP DAQ control software+ Data base can be kept as is.
- Plan is to store one spill’s worth of data on each detector and read out the whole lot at end of spill.

June 28, 2008
Nickolas Solomey, BEACH 2008
Nuclei of interest- 1st pass list

- The A-List
 - $\text{H}_2, \text{D}_2, \text{Li}, \text{Be}, \text{B}, \text{C}, \text{N}_2, \text{O}_2, \text{Mg}, \text{Al}, \text{Si}, \text{P}, \text{S}, \text{Ar}, \text{K}, \text{Ca}$,$\text{Fe}, \text{Ni}, \text{Cu}, \text{Zn}, \text{Nb}, \text{Ag}, \text{Sn}, \text{W}, \text{Pt}, \text{Au}, \text{Hg}, \text{Pb}, \text{Bi}, \text{U}$

- The B-List
 - $\text{Na}, \text{Ti}, \text{V}, \text{Cr}, \text{Mn}, \text{Mo}, \text{I}, \text{Cd}, \text{Cs}, \text{Ba}$

- On each nucleus, we can acquire 5 million events/day with one 4sec beam spill every 2 mins and a 42% downtime.

- We plan to run several different momenta and both charges.

- The libraries of events thus produced will be fed into shower generator programs which currently have 30 year old single arm spectrometer data with high systematics.
Spallation products

- Such a recoil detector coupled with the TPC can detect spallation products such as “grey” and “Black” protons, and neutrons as well as nuclear fragments.
- Table from Textbook on Calorimetry by Wigmans

<table>
<thead>
<tr>
<th></th>
<th>Binding Energy (# neutrons)</th>
<th>Evaporation n (# neutrons)</th>
<th>Cascade n (# neutrons)</th>
<th>Ionization Target recoil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before first reaction</td>
<td></td>
<td></td>
<td></td>
<td>(250)(π_{in})</td>
</tr>
<tr>
<td>First reaction</td>
<td>126</td>
<td>27(9)</td>
<td>519 (4.2)</td>
<td>350(2.8)</td>
</tr>
<tr>
<td>Generation 2</td>
<td>187</td>
<td>63(21)</td>
<td>161(1.7)</td>
<td>105(1.1)</td>
</tr>
<tr>
<td>Generation 3</td>
<td>77</td>
<td>24(8)</td>
<td>36(1.1)</td>
<td>23 (0.7)</td>
</tr>
<tr>
<td>Generation 4</td>
<td>24</td>
<td>12(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>414</td>
<td>126(41)</td>
<td></td>
<td>478(4.6)</td>
</tr>
</tbody>
</table>

TABLE I: Destination of 1.3 GeV total energy carried by an average pion produced in hadronic shower development in lead. Energies are in MeV.
Detect recoil protons, neutrons, pizeros and charged pions, kaons.
Can we reduce our dependence on models?

- Answer- Yes- With the MIPP Upgrade experiment, one can acquire 5 million events per day on various nuclei with six beam species (π^\pm,K^\pm,p^\pm) with beam momenta ranging from 1 GeV/c-90 GeV/c. Full acceptance over phase space, including info on nuclear fragmentation.

- This permits one to consider random access event libraries that can be used to generate the interactions in the shower.
Random Access Data Libraries

• Typical storage needed

<table>
<thead>
<tr>
<th>Nuclei</th>
<th>beam species</th>
<th>momentum bins</th>
<th>events/bin</th>
<th>tracks/event</th>
<th>words/track</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>6</td>
<td>10</td>
<td>100000</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

Number of events: 1.80E+08
Total number of words: 9.00E+09

Bytes: 3.60E+10

• Mean multiplicities and total and elastic cross section curves are parametrised as a function of s.
ILC needs

- Particle flow algorithm needs to distinguish neutral and charged energy deposits in the calorimeter. Depending on simulator used, the shower radius of a charged pion shower varies by as much as 60% in a calorimeter.
Tagged neutron and K-long beams in MIPP-For ILC Particle flow algorithm studies

- MIPP Spectrometer permits a high statistics neutron and K-long beams generated on the LH2 target that can be tagged by constrained fitting. The neutron and K-long momenta can be known to better than 2%. The energy of the neutron (K-long) can be varied by changing the incoming proton(K+) momentum. The reactions involved are:

\[pp \rightarrow pn\pi^+ \]
\[K^+ p \rightarrow pK_L^0\pi^+ \]
\[K^- p \rightarrow pK_L^0\pi^- \]
\[\bar{p}p \rightarrow \bar{n}\pi^- p \]

See R.Raja-MIPP Note 130
~50K tagged neutrons per day
MIPP LH_2 target
Neutron spectra for various beam momenta

2006/05/08 11.29

Neutron Momentum accepted events

10 GeV/c

30 GeV/c

60 GeV/c

90 GeV/c

June 28, 2008
Nicholas Solomey, BEACH 2008
Proton spectra for various beam momenta

June 28, 2008

Nickolas Solomey, BEACH 2008
Pion spectra for various beam momenta

June 28, 2008 Nickolas Solomey, BEACH 2008
Expected tagged neutral beam rates

<table>
<thead>
<tr>
<th>Beam Momentum GeV/c</th>
<th>Proton Beam n/day</th>
<th>K+ beam K-Long/day</th>
<th>K- beam K-Long/day</th>
<th>Antiproton beam anti-n/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20532</td>
<td>4400</td>
<td>4425</td>
<td>6650</td>
</tr>
<tr>
<td>20</td>
<td>52581</td>
<td>9000</td>
<td>9400</td>
<td>11450</td>
</tr>
<tr>
<td>30</td>
<td>66511</td>
<td>12375</td>
<td>14175</td>
<td>13500</td>
</tr>
<tr>
<td>60</td>
<td>47069</td>
<td>15750</td>
<td>14125</td>
<td>13550</td>
</tr>
<tr>
<td>90</td>
<td>37600</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TPC Electronics Upgrade

15,360 pads in TPC. 16µs to drift from top to bottom. In principle, there are 3,800,000 individual data points possible. Each data point is a time bucket and a dE/dx ADC value. A MIPP event sparsely populates this space and is ~110kBytes in size. The old readout is 1990’s vintage and the readout system is heavily multiplexed and limited to 60Hz maximum. For our events, we were able to achieve ~30Hz.

Redesign with ALICE ALTRO/PASA chips with inbuilt zero suppression can produce a readout working at 3kHz. A factor of 100 in speed.

10 times more data using 10 times less beam time!
MIPP Trigger Upgrade

- Beam sizes are large in MIPP due to the “low divergence” condition needed for beam CKOV’s.
- Previous trigger of SCINT counter + 1st drift chamber wire signals performed satisfactorily for MIPP –I physics but needs improvement at low multiplicities—Landau tails.
- We propose to use silicon pixel counters (B-TEV, Phenix).
- Use a “Bull’s Eye” system to detect absence of beam particle in final state to signal interactions. Also use the multiplicity in the final state as an additional piece of information.

![Silicon Detector Diagram]

First layer before target tags where beam is and that there was only 1 hit cell. Brown circle represents where 86% of the beam hits the 4 cells in the center.

A bulls eye target, shown in blue, is made around the one cell hit location of plane 1.
Plastic Ball Recoil detector

- Plastic ball detector is available. GSI/KVI have joined MIPP. We will install a hemisphere in MIPP. Mounting details to be worked out. Need the ability to remove the detector to repair it and the TPC.
- Transportation to Fermilab.
- GSI/KVI will play a lead role in making this happen.
- Detector will help in all aspects of MIPP data including tagged neutral beams, missing baryon resonances and hadronic shower simulation data.

WBS task 10 Fermi M&s $0
Labor $25.9K, In Kind $55K
MIPP Upgrade Timeline

<table>
<thead>
<tr>
<th>WBS</th>
<th>Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
<th>Q3 ’06</th>
<th>Q4 ’06</th>
<th>Q1 ’07</th>
<th>Q2 ’07</th>
<th>Q3 ’07</th>
<th>Q4 ’07</th>
<th>Q1 ’08</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>MIPP</td>
<td>127.8 wks</td>
<td>Thu 7/13/06</td>
<td>Tue 12/23/08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Project Management</td>
<td>74.2 wks</td>
<td>Thu 7/13/06</td>
<td>Mon 1/7/08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Jolly Green Giant Repair</td>
<td>62 wks</td>
<td>Thu 7/13/06</td>
<td>Thu 10/4/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Improvements on detector hardware</td>
<td>43 wks</td>
<td>Wed 11/1/06</td>
<td>Tue 9/11/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Detector Readout Upgrades</td>
<td>67.8 wks</td>
<td>Mon 8/21/06</td>
<td>Thu 12/27/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>TPC Electronics</td>
<td>67.8 wks</td>
<td>Mon 8/21/06</td>
<td>Thu 12/27/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Drift Chamber/Wire Chamber electronics</td>
<td>31.7 wks</td>
<td>Thu 1/4/07</td>
<td>Fri 8/17/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>ToF + Ckov electronics board design</td>
<td>9.5 wks</td>
<td>Fri 8/3/07</td>
<td>Wed 10/10/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Calorimeter migration to Fera electronics</td>
<td>9 wks</td>
<td>Wed 11/1/06</td>
<td>Wed 11/1/06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Trigger System Upgrade</td>
<td>37.6 wks</td>
<td>Wed 11/1/06</td>
<td>Thu 8/2/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Interaction Trigger Fpix</td>
<td>34.6 wks</td>
<td>Wed 11/1/06</td>
<td>Thu 7/12/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Interaction Trigger Board</td>
<td>25.4 wks</td>
<td>Wed 11/1/06</td>
<td>Thu 4/26/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Other Trigger Upgrades</td>
<td>4 wks</td>
<td>Fri 7/6/07</td>
<td>Thu 8/2/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DAQ Software and Hardware Upgrade</td>
<td>74.6 wks</td>
<td>Tue 8/1/06</td>
<td>Tue 1/29/08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Offline farm Upgrade</td>
<td>9 wks</td>
<td>Thu 11/1/07</td>
<td>Thu 1/10/08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Beam Line Upgrade</td>
<td>9 wks</td>
<td>Thu 3/1/07</td>
<td>Wed 5/2/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Enhanced Veto Wall</td>
<td>9 wks</td>
<td>Mon 4/2/07</td>
<td>Mon 8/4/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Recoil Detector</td>
<td>28 wks</td>
<td>Wed 11/1/06</td>
<td>Thu 5/24/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Visitor Support for Russian collaborators</td>
<td>103.2 wks</td>
<td>Tue 1/2/07</td>
<td>Tue 12/23/08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Commissioning Run Start</td>
<td>0 wks</td>
<td>Tue 1/29/08</td>
<td>Tue 1/29/08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Detailed schedule to be found in

June 28, 2008

Nickolas Solomey, BEACH 2008
Run Plan

Phase 1 Run Plan

<table>
<thead>
<tr>
<th>Target</th>
<th>Number of Events (Millions)</th>
<th>Running Time (Days)</th>
<th>Physics Need Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>NuMI Low Energy target</td>
<td>10</td>
<td>2</td>
<td>MINOS MINERVA</td>
</tr>
<tr>
<td>NuMI Medium Energy Target</td>
<td>10</td>
<td>2</td>
<td>MINERVA NOVA</td>
</tr>
<tr>
<td>Liquid Hydrogen</td>
<td>20</td>
<td>4</td>
<td>QCD PANDA DUBNA</td>
</tr>
<tr>
<td>Liquid Nitrogen</td>
<td>10</td>
<td>2</td>
<td>ICE CUBE</td>
</tr>
<tr>
<td>12 Nuclei</td>
<td></td>
<td></td>
<td>Nuclear Physics</td>
</tr>
<tr>
<td>D2 Be C Al Si Hg Fe Ni Cu Zn W Pb</td>
<td>60</td>
<td>12</td>
<td>Hadronic Showers</td>
</tr>
<tr>
<td>Total Events</td>
<td>110</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Raw Storage</td>
<td>11 TBytes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processed Storage</td>
<td>55 TBytes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phase 2 Run Plan

<table>
<thead>
<tr>
<th>Target</th>
<th>Number of Events (Millions)</th>
<th>Running Time (Days)</th>
<th>Physics Need Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Nuclei</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li B O2 Mg P S Ar K Ca</td>
<td></td>
<td></td>
<td>Nuclear Physics</td>
</tr>
<tr>
<td>Ni Nb Ag Sn Pt Au Pb Bi U</td>
<td>90</td>
<td>18</td>
<td>Hadronic Showers</td>
</tr>
<tr>
<td>10 Nuclei B-list</td>
<td></td>
<td></td>
<td>Nuclear Physics</td>
</tr>
<tr>
<td>Na Ti V Cr Mn Mo I Cd Cs Ba</td>
<td>50</td>
<td>10</td>
<td>Hadronic Showers</td>
</tr>
<tr>
<td>Total Events</td>
<td>140</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Raw Storage</td>
<td>14 TBytes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processed Storage</td>
<td>70 TBytes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phase 3 - Tagged Neutral beams for ILC 5 million events/day LH2 target

June 28, 2008

Nickolas Solomey, BEACH 2008
Conclusions

- The MIPP Upgrade Collaboration has proposed a cost effective way to upgrade the experiment to speed up the DAQ by a factor of 100.
- We propose to add a recoil detector that will enhance the physics reach of the experiment.
- We propose to measure the NUMI LE/ ME targets.
- As well as 30 nuclei to benefit hadron shower simulators and the cosmic ray community.
- This and the tagged neutral beams will benefit the ILC PFA algorithm studies.
- We propose to increase the momentum range of the beams (down to 1 GeV/c) that will benefit the hadron shower simulators and permit the search for missing baryon resonances.