Hidden and open charm at Belle ${ }^{\wedge \text { [and elsewhere] }}$

Bruce Yabsley
Belle collaboration / University of Sydney High Energy Physics group
BEACH 2008, University of South Carolina, 26th June 2008

Mixing since 2006: (1) yCP via $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}, \pi^{+} \pi^{-}$

M. Starič, B. Golob et al, Phys. Rev. Lett. 98, 211803 (2007)

very robust evidence for mixing:
strongly data-driven $R\left(t-t^{\prime}\right)$
result tracks run periods, $\tau_{\mathrm{D}^{0}}$
binned fits, good $P\left(\chi^{2}, n_{\text {dof }}\right)$ throughout

Mixing since 2006: (2) $\mathrm{K}_{\mathrm{S}}^{0} \pi \pi$ t-dependent Dalitz

L.-M. Zhang et al, Phys. Rev. Lett. 99, 131803 (2007)

sub-\%-level access to (x, y)
[CLEO method; CLEO stats $\times 60$]:

$$
\begin{aligned}
\mathcal{M}\left(m_{-}^{2}, m_{+}^{2}, t\right) & =\mathcal{A}\left(m_{-}^{2}, m_{+}^{2}\right) \frac{1}{2}\left[e_{1}(t)+e_{2}(t)\right] \\
& +\frac{q}{p} \overline{\mathcal{A}}\left(m_{-}^{2}, m_{+}^{2}\right) \frac{1}{2}\left[e_{1}(t)-e_{2}(t)\right]
\end{aligned}
$$

Mixing since 2006: (2) $K_{S}^{0} \pi \pi$ t-dependent Dalitz

 L.-M. Zhang et al, Phys. Rev. Lett. 99, 131803 (2007)
only 2.2σ signif. in isolation but gives standalone 2D anchor in (x, y) [favours lower y than $y_{C P}$ results ...]

Mixing since 2006: (3) $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{(*)+} \ell^{-} \bar{\nu}$

U. Bitenc et al, Phys. Rev. D 77, 112003 (2008)

- $(2005$ result + stats $+\mu)$ method improvement
- $R_{M}<6.1 \times 10^{-4}$ (90\% limit) cf. $R_{M} \sim 5.9 \times 10^{-4}$
from FOCUS $y_{C P}$ value

Mixing since 2006: (4) grand average

HFAG-Charm, current at FPCP08/Taipei (May 2008)

- other evidence: $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}$
- BaBar 3.9 σ PRL 98, 211802
- Belle'06: $\left\{\begin{array}{l}\simeq \text { sensitivity } \\ \text { lower signif. }\end{array}\right.$
- CDF 3.8 σ compatible result arXiv:0712.1567 [hep-ex] \rightarrow PRL
- also $\mathrm{K}^{+} \pi^{-} \pi^{0} \& \mathrm{~K}^{+} \pi^{-} \pi^{+} \pi^{-}$: [see V.Santoro talk for mixing/BaBar]
- global fit driven by:

$$
\left\{\begin{array}{lll}
x: & \mathrm{K}_{S}^{0} \pi^{+} \pi^{-} & -1 \\
y: & y_{\mathrm{CP}}, \mathrm{~K}_{S}^{0} \pi^{+} \pi^{-} & \\
\ni ?(0,0): & y_{\mathrm{CP}}, \mathrm{~K}^{+} \pi^{-}\left(\text {and } \mathrm{K}_{S}^{0} \pi^{+} \pi^{-}, \mathrm{K}^{+} \pi^{-} \pi^{0}\right)
\end{array}\right.
$$

- CLEO-c $\left(\left|\mathrm{D}^{0}\right\rangle\left|\overline{\mathrm{D}}^{0}\right\rangle-\left|\overline{\mathrm{D}}^{0}\right\rangle\left|\mathrm{D}^{0}\right\rangle\right)+$ WA $y: \delta_{\mathrm{K} \pi}$ constraint

Mixing since 2006: (5) CPV in our future?

HFAG-Charm, current at FPCP08/Taipei (May 2008)

X(3872): state of play in 2006

adapted from B.D. Yabsley, Beauty 2006 review; arXiv:hep-ex/0702012

- narrow; prominent $\pi^{+} \pi^{-} \psi$ decay [Belle discovery; CDF, D0, BaBar]
- $\mathcal{B}\left(X \rightarrow \pi^{+} \pi^{-} J / \psi\right)>4.2 \%$
- 「 $<2.3 \mathrm{MeV}$ (90\% C.L.)
[BaBar inclusive, PRD 71, 031501]
[Belle discovery]
- $M=(3871.2 \pm 0.5) \mathrm{MeV} \lesssim\left(m_{\mathrm{D}^{0}}+m_{\mathrm{D}^{*}}\right)$ by $1 \sigma \quad$ [WA; CLEO]
- p $\bar{p} \operatorname{prod}^{n}:(16 \pm 5 \pm 2) \%$-decay, rest prompt; " ψ^{\prime}-like" [CDF]
- $X^{ \pm}$not seen: not an isovector
[BaBar PRD 71, 031501]
- C-even, from $X \rightarrow \gamma \psi$ [Belle, BaBar] and $\pi^{+} \pi^{-} \pi^{0} \psi$ [Belle]
- $X \rightarrow \rho \psi$ dominates, $L=0,1 \quad\left[C D F M\left(\pi^{+} \pi^{-}\right) P R L\right.$ 96, 102002]
- $J^{P C}=1^{++}$or $2^{-+} \quad$ [CDF angular PRL 98, 132002]
$-\mathrm{B}^{+}$vs $\mathrm{B}^{0} \rightarrow \mathrm{~K} X$ "needs more data" ${ }^{T M} \quad[B a B a r ~ P R D ~ 73,011101(\mathrm{R})]$
- X peak in $\mathrm{B} \rightarrow \mathrm{KD}^{0} \overline{\mathrm{D}}^{0} \pi^{0}$ needs confirm ${ }^{n}$ [Belle PRL 97, 162002]
- experimental loose ends: $\pi^{0} \pi^{0} J / \psi, \gamma \psi^{\prime}, \pi^{+} \pi^{-} \eta_{c}, \mathrm{D} \overline{\mathrm{D}} \gamma$

X(3872): loose ends that have been addressed

Belle 2007 conf. prelim.; cf. BaBar PRD 77, 111101 (2008); and others

$$
\begin{array}{rlccr}
R & =\mathcal{B}_{\mathrm{K}^{0} x} / \mathcal{B}_{\mathrm{K}^{+} x} & 0.94 \pm 0.24 \pm 0.10 & c f . & 0.41 \pm 0.24 \pm 0.05 \\
\delta m & =M_{\mathrm{K}^{+} x}-M_{\mathrm{K}_{S}^{0} X} & (+0.22 \pm 0.90 \pm 0.27) \mathrm{MeV} & \text { BaBar: } & (+2.7 \pm 1.6 \pm 0.4) \mathrm{MeV}
\end{array}
$$

 [note withdrawal of molecule \rightarrow low- R claim: Braaten \& Lu, PRD 77, 014029 (2008)]

BaBar [PRD 77, 01102 (2008)] confirms large $\mathcal{B}\left(X \rightarrow \mathrm{D}^{0} \overline{\mathrm{D}}^{0} \pi^{0}\right)$

- $X \rightarrow \mathrm{D}^{* 0} \overline{\mathrm{D}}^{0}$ or $\mathrm{D}^{0} \overline{\mathrm{D}}^{0} \pi^{0}$? [nontrivial lineshape; discriminating]
- $M=\left(3875.1_{-0.5}^{+0.7} \pm 0.5\right) \mathrm{MeV}$ (Belle 3875.4); two states? dynamics?
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi \mathrm{D}^{(*)} \overline{\mathrm{D}}^{(*)}$: states above threshold
P. Pakhlov et al, Phys. Rev. Lett. 100, 202001 (2008)
refinement of $M_{\text {recoil }}(\psi)$ method:
- D reconstruction; refit $\rightarrow m_{\mathrm{D}}$
- tag: $\left|M_{\text {recoil }}\left(\psi \mathrm{D}^{(*)}-m_{\text {tag }}\right)\right|<70 \mathrm{MeV}$ and constrain $\rightarrow m_{\text {tag }}=m_{\mathrm{D}^{(*)}}$
- fit $M\left(\mathrm{D}^{(*)} \overline{\mathrm{D}}^{(*)}\right)$: bkgd (sideband) + x-feed + threshold $f^{n}+$ rel. S-wave B-W

$$
\begin{aligned}
& \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi X\right) \times \mathcal{B}\left(X \rightarrow \mathrm{D}^{(*)} \overline{\mathrm{D}^{*}}\right) \\
& \begin{array}{|l|l|ll|}
\hline X(3940) & \mathrm{D}^{*} & \left(13.9_{-4.1}^{+6.4}\right) \mathrm{fb} & {[6.0 \sigma]} \\
X(4160) & \mathrm{D}^{*} \overline{\mathrm{D}}^{*} & \left(24.7_{-8.3}^{+12.8}\right) \mathrm{fb} & {[5.5 \sigma]}
\end{array} \\
& \text { cf. } \psi(n S) \eta_{c}(m S): \sim 20 \mathrm{fb} \text { for } m, n \in\{1,2\}:
\end{aligned}
$$

- consistent with X as $c \bar{c}$ states?
- production mechanism still not understood

the $\mathrm{Y}(3940)$ threshold enhancement and BaBar

Belle PRL 94, 182002 (2005); BaBar arXiv:0711.2047 [hep-ex] \rightarrow PRL
$\mathrm{B} \rightarrow \mathrm{K} \omega \psi$ sample: enhancement " $Y(3940)$ " at $\omega \psi$ threshold:
-cf. $\begin{cases}X(3940)\left[? ? \eta_{c}(3 S)\right] & \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi X \\ Z(3930)\left[? \chi_{c 2}(2 P)\right] & \gamma \gamma \rightarrow \mathrm{D} \overline{\mathrm{D}}\end{cases}$
Y hardest to understand as $(c \bar{c})_{\text {res }}$

- even non- $(c \bar{c})_{\text {res }}$ (e.g. hybrid) hard \Longrightarrow least-believed of "XYZ" states

the $Y(3940)$ threshold enhancement and BaBar

Belle PRL 94, 182002 (2005); BaBar arXiv:0711. 2047 [hep-ex] \rightarrow PRL
$\mathrm{B} \rightarrow \mathrm{K} \omega \psi$ sample: enhancement " $Y(3940)$ " at $\omega \psi$ threshold:
-cf. $\begin{cases}X(3940)\left[? ? \eta_{c}(3 S)\right] & \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi X \\ Z(3930)\left[? \chi_{c 2}(2 P)\right] & \gamma \gamma \rightarrow \mathrm{D} \overline{\mathrm{D}}\end{cases}$
Y hardest to understand as $(c \bar{c})_{\text {res }}$

- even non- $(c \bar{c})_{\text {res }}$ (e.g. hybrid) hard \Longrightarrow least-believed of "XYZ" states
- spectacular confirmation by BaBar:
- M-dependent $\{$ resolution, $\epsilon\}$ corr n
- simultaneous $\mathrm{B}^{+} \& \mathrm{~B}^{0}$ fit; R floats
- Gaussian bkgd + S-wave B-W signal cf. Belle threshold $q^{*}(M)+$ S-wave B-W

- $M=\left(3914.6_{-3.4}^{+3.8} \pm 1.9\right) \mathrm{MeV}, \Gamma=\left(34_{-8}^{+12} \pm 5\right) \mathrm{MeV}[$ both $<$ Belle $]$
- $R_{Y}=\mathcal{B}_{\mathrm{B}^{0}} / \mathcal{B}_{\mathrm{B}^{+}}=0.27_{-0.23}^{+0.28+0.01}{ }_{-0.01} ; c f$. $R_{\text {non-res }}=0.97_{-0.22}^{+0.23+0.03}$

The 1^{--}states seen in ISR (following BaBar)

C.Z. Yuan et al, PRL 99, 182004; X.L. Wang et al, PRL 99, 142002 (2007);

- confirms Y (4260) [also CLEO]
- amplitude nontrivial near 4050 MeV

- confirms $\pi^{+} \pi^{-} \psi^{\prime}$ signal
- splits " $Y(4360)$ " peak \rightarrow two
none seen in ISR $\mathrm{D}^{(*)} \overline{\mathrm{D}}^{(*)}$: e.g. explicit BaBar $Y(4260)$ limit $\mathcal{B}_{\mathrm{DD}} / \mathcal{B}_{\pi^{+} \pi^{-} \psi}<1.0$ at 90% C.L. [arXiv:0710.1371 \rightarrow PRD]

A summary of the hidden-charm states, circa 2007

- $(c \bar{c})_{\text {res }}$ states expected below $\mathrm{D} \overline{\mathrm{D}}$ threshold have all been seen

A summary of the hidden-charm states, circa 2007

- $(c \bar{c})_{\text {res }}$ states expected below $\mathrm{D} \overline{\mathrm{D}}$ threshold have all been seen
- $Z(3930) \rightarrow \mathrm{D} \overline{\mathrm{D}}$ is widely believed to be the $\chi_{c 2}(2 P)$
- $X(3940) \rightarrow \mathrm{D} \overline{\mathrm{D}}^{*}$ is plausibly $\eta_{c}(3 S)\left[X(4160) \rightarrow \mathrm{D}^{*} \overline{\mathrm{D}}^{*}: \eta_{c}(3 S)\right.$ or $\left.\chi_{c 0}(3 P)\right]$
- $Y(3940) \rightarrow \omega \psi$ enhancement confirmed, but what is it?
- $\chi_{c 1}(2 P)$) at "wrong" mass; decay due to rescattering?
- $c \bar{c} g$ hybrid? [at this mass?] other exotic? nontrivial dynamics?

A summary of the hidden-charm states, circa 2007

- $(c \bar{c})_{\text {res }}$ states expected below $\mathrm{D} \overline{\mathrm{D}}$ threshold have all been seen
- $Z(3930) \rightarrow \mathrm{D} \overline{\mathrm{D}}$ is widely believed to be the $\chi_{c 2}(2 P)$
$-X(3940) \rightarrow \mathrm{D} \overline{\mathrm{D}}^{*}$ is plausibly $\eta_{c}(3 S)\left[X(4160) \rightarrow \mathrm{D}^{*} \overline{\mathrm{D}}^{*}: \eta_{c}(3 S)\right.$ or $\left.\chi_{c 0}(3 P)\right]$
- $Y(3940) \rightarrow \omega \psi$ enhancement confirmed, but what is it?
- $\left.\chi_{c 1}(2 P)\right)$ at "wrong" mass; decay due to rescattering?
- $c \bar{c} g$ hybrid? [at this mass?] other exotic? nontrivial dynamics?
- dynamics is important: $X(3872)$ is right at $\mathrm{D}^{0} \overline{\mathrm{D}}^{* 0}$ threshold
- on general grounds, $\left|\mathrm{D}^{0}\right\rangle\left|\overline{\mathrm{D}}{ }^{* 0}\right\rangle$ is involved somehow
- molecular model is still popular [see arXiv:0806.3653 on π-exchange]

A summary of the hidden-charm states, circa 2007

- $(c \bar{c})_{\text {res }}$ states expected below $\mathrm{D} \overline{\mathrm{D}}$ threshold have all been seen
- $Z(3930) \rightarrow \mathrm{D} \overline{\mathrm{D}}$ is widely believed to be the $\chi_{c 2}(2 P)$
$-X(3940) \rightarrow \mathrm{D} \overline{\mathrm{D}}^{*}$ is plausibly $\eta_{c}(3 S)\left[X(4160) \rightarrow \mathrm{D}^{*} \overline{\mathrm{D}}^{*}: \eta_{c}(3 S)\right.$ or $\left.\chi_{c 0}(3 P)\right]$
- $Y(3940) \rightarrow \omega \psi$ enhancement confirmed, but what is it?
- $\left.\chi_{c 1}(2 P)\right)$ at "wrong" mass; decay due to rescattering?
- $c \bar{c} g$ hybrid? [at this mass?] other exotic? nontrivial dynamics?
- dynamics is important: $X(3872)$ is right at $\mathrm{D}^{0} \overline{\mathrm{D}}^{* 0}$ threshold
- on general grounds, $\left|\mathrm{D}^{0}\right\rangle\left|\overline{\mathrm{D}}{ }^{* 0}\right\rangle$ is involved somehow
- molecular model is still popular [see arXiv:0806.3653 on π-exchange]
- ISR $\gamma^{*} \rightarrow Y(\{4260$, friends $\}) \rightarrow \pi^{+} \pi^{-} \psi^{(\prime)}$ interpretations: must account for multiple peaks \& ψ-vs- ψ^{\prime} preferences

A summary of the hidden-charm states, circa 2007

- $(c \bar{c})_{\text {res }}$ states expected below $\mathrm{D} \overline{\mathrm{D}}$ threshold have all been seen
- $Z(3930) \rightarrow \mathrm{D} \overline{\mathrm{D}}$ is widely believed to be the $\chi_{c 2}(2 P)$
- $X(3940) \rightarrow \mathrm{D} \overline{\mathrm{D}}^{*}$ is plausibly $\eta_{c}(3 S)\left[X(4160) \rightarrow \mathrm{D}^{*} \overline{\mathrm{D}}^{*}: \eta_{c}(3 S)\right.$ or $\left.\chi_{c 0}(3 P)\right]$
- $Y(3940) \rightarrow \omega \psi$ enhancement confirmed, but what is it?
- $\left.\chi_{c 1}(2 P)\right)$ at "wrong" mass; decay due to rescattering?
- $c \bar{c} g$ hybrid? [at this mass?] other exotic? nontrivial dynamics?
- dynamics is important: $X(3872)$ is right at $\mathrm{D}^{0} \overline{\mathrm{D}}^{* 0}$ threshold
- on general grounds, $\left|\mathrm{D}^{0}\right\rangle\left|\overline{\mathrm{D}}{ }^{* 0}\right\rangle$ is involved somehow
- molecular model is still popular [see arXiv:0806.3653 on π-exchange]
- ISR $\gamma^{*} \rightarrow Y(\{4260$, friends $\}) \rightarrow \pi^{+} \pi^{-} \psi^{(\prime)}$ interpretations: must account for multiple peaks \& ψ-vs- ψ^{\prime} preferences
- phenomenology demands some non- $(c \bar{c})_{\text {res }}$ structure(s), BUT
- not every peak is necessarily a state [Charm 2007: arXiv:0711.1636]
- the implied spectrum must not be too rich: we do not see a forest

Z(4430) ${ }^{+}$: a charged [?state?] with hidden charm

S.-K. Choi, S.L. Olsen et al, Phys. Rev. Lett. 100, 142001 (2007)
some structures allow manifestly exotic states with Q and/or $S \neq 0$:

- Belle looked in $\mathrm{B} \rightarrow \mathrm{K} \pi^{ \pm} \psi^{\prime}$,

$$
\psi^{\prime} \rightarrow \begin{cases}\pi^{+} \pi^{-} \psi & \psi \rightarrow \ell^{+} \ell^{-} \\ \ell^{+} \ell^{-} & (\ell=\mathrm{e}, \mu)\end{cases}
$$

- standard B recon, $q \bar{q}$ supp n
- $2.5 \mathrm{~K} \mathrm{~B} \mathrm{signal}, \approx 90 \%$ purity
- Dalitz $\left(M^{2}\left(\mathrm{~K} \pi^{+}\right), M^{2}\left(\pi^{+} \psi^{\prime}\right)\right)$:
- vertical: $\mathbf{K}^{*} \psi^{\prime}, \mathbf{K}_{2}^{*}(1430) \psi^{\prime}$
- horizontal: $M^{2}\left(\pi^{+} \chi_{c 1}\right) \simeq 20 \mathrm{GeV}^{15}$
- veto $\mathrm{K}^{*}(892), \mathrm{K}_{2}^{*}$ (1430)

- study in $\Delta E=E_{\mathrm{B}}-E_{\text {beam }} \ldots$

Z(4430) ${ }^{+}$: a charged [?state?] with hidden charm

S.-K. Choi, S.L. Olsen et al, Phys. Rev. Lett. 100, 142001 (2007)

- signal; scaled δE sideband
- fit S-wave B-W signal + bkgd $q^{*}\left(Q^{1 / 2}+A_{1} Q^{3 / 2}+A_{2} Q^{5 / 2}\right)$
- $q^{*}: p\left(\pi^{+}\right)$in $\pi^{+} \psi^{\prime}$ rest
- $Q=M_{\max }-M\left(\pi^{+} \psi^{\prime}\right)$ $\left[M\left(\pi^{+} \psi^{\prime}\right)<4.78 \mathrm{GeV}=M_{\text {max }}\right]$
- 6.5σ peak; $\chi^{2} / n_{\text {dof }}=80.2 / 94$
- subsample fits performed:
- signals; consistent M
- width discrep ${ }^{y}$ betw. $\pi \pi \psi$, $\ell \ell$
- not $\mathrm{K} \pi\{S, P, D\}$ interference [too narrow: gives other structures]

- $M=(4433 \pm 4 \pm 2) \mathrm{MeV}, \Gamma=\left(45_{-13}^{+18+13}\right) \mathrm{MeV}$

$\overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \chi_{\mathrm{c} 1}:(1)$ basics

BELLE-CONF-0848/arXiv:0806.4098 [hep-ex] available now

- $605 \mathrm{fb}^{-1}: 657 \times 10^{6} \mathrm{~B} \overline{\mathrm{~B}}$
- recon $\overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \chi_{c 1}+$ c.c.
- $\chi_{c 1} \rightarrow \gamma \psi$
- $\psi \rightarrow \ell^{+} \ell^{-}, \mu^{+} \mu^{-}$
- mass-constrained fit to both
- $\mathrm{B} \overline{\mathrm{B}}$ sel $^{n}:\left\{\begin{array}{l}M_{b c} \in[5275,5287] \mathrm{MeV}\end{array}\right.$

$$
|\Delta E|<12 \mathrm{MeV}
$$

- $2126 \pm 56 \pm 42$ candidates
- $\epsilon=(20.0 \pm 1.4) \%$
- ΔE sidebands for bkgd estim ${ }^{n}$
- constrained fit to m_{B}
- Dalitz $\left(M^{2}\left(\mathrm{~K}^{-} \pi^{+}\right), M^{2}\left(\pi^{+} \chi_{c 1}\right)\right)$:
- vertical band for $\mathrm{K}^{*}(892)^{+} \chi_{c 1}$

$M^{2}\left(K^{-} \pi^{+}\right), \mathrm{GeV}^{2} / \mathrm{c}^{4}$
- horizontal band $M^{2}\left(\pi^{+} \chi_{c 1}\right) \simeq 17 \mathrm{GeV} \ldots$

$\overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \chi_{\mathrm{c} 1}$: (2) fit details

BELLE-CONF-0848/arXiv:0806.4098 [hep-ex] available now

- integration over angular quantities $\cos \theta_{\chi_{c 1}}, \phi_{\chi_{c 1}}, \cos \theta_{\psi}, \phi_{\psi}$:
- efficiency almost uniform ...
- distributions studied as cross-check after the fit
- binned likelihood fit (small bins: fully-contained subset of 400×400)
- $F\left(s_{x}, s_{y}\right)=S\left(s_{x}, s_{y}\right) \times \epsilon\left(s_{x}, s_{y}\right)+B\left(s_{x}, s_{y}\right)$
[bkgd $B\left(s_{x}, s_{y}\right)$ from ΔE sidebands; effy ϵ from MC; both smoothed]
- isobar model: $\pi^{+} \chi_{c 1}$ exotic resonance + known $\mathrm{K}^{-} \pi^{+}$
$\left\{\kappa, \mathrm{K}^{*}(892), \mathrm{K}^{*}(1410), \mathrm{K}_{0}^{*}(1430), \mathrm{K}_{2}^{*}(1430), \mathrm{K}^{*}(1680), \mathrm{K}_{3}^{*}(1780)\right\}$
- Blatt-Weisskopf form factors
- energy-dependent widths
- angular terms from helicity formalism
[$\lambda_{\chi_{c 1}}$ subtlety: different ref. axes for $\mathrm{K}^{*}(\rightarrow \mathrm{~K} \pi) \chi_{c 1}$ and $\mathrm{K} Z\left(\rightarrow \pi \chi_{c 1}\right)$]
- $\left(m_{i}, \Gamma_{i}\right)$ fixed to PDG averages save κ and $\pi^{+} \chi_{c 1}$ exotic

$\overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \chi_{\mathrm{c} 1}$: (3) fit with known K^{*} states

BELLE-CONF-0848/arXiv:0806.4098 [hep-ex] available now

$\overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \chi_{\mathrm{c} 1}$: (4) known $\mathrm{K}^{*}+\mathrm{K}_{2}^{*}, \chi_{\mathrm{c} 1} \mathrm{~K}$ NR

 BELLE-CONF-0848/arXiv:0806.4098 [hep-ex] available now

$\overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \chi_{\mathrm{c} 1}$: (5) fit with $\mathrm{Z}^{+} \rightarrow \pi^{+} \chi_{\mathrm{c} 1}$ added

 BELLE-CONF-0848/arXiv:0806.4098 [hep-ex] available now
 $\mathrm{M}^{2}\left(x_{\mathrm{C}} \pi^{+}\right), \mathrm{GeV}^{2} / \mathrm{c}^{4}$

$$
\mathrm{M}^{2}\left(\chi_{\mathrm{c}}, \pi^{+}\right), \mathrm{GeV}^{2} / c^{4}
$$

proj ${ }^{n s}$ to
Dalitz slices:

- significant ($>10 \sigma$) Z term:
- general agreement throughout
- peak fine structure poor
- 92-bin χ_{P}^{2} fit: 0.1% C.L.

$\overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \chi_{\mathrm{c} 1}$: (6) with two $\mathrm{Z}^{+} \rightarrow \pi^{+} \chi_{\mathrm{c} 1}$ terms

 BELLE-CONF-0848/arXiv:0806.4098 [hep-ex] available now

proj ${ }^{n s}$ to Dalitz slices:

- two-vs-one Z favoured:
- matches peak fine structure
- $>5 \sigma$ improvement
- good total fit quality: 40% C.L.

$\overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \chi_{\mathrm{c} 1}$: (7) fit contributions

BELLE-CONF-0848/arXiv:0806.4098 [hep-ex] available now
One Z^{+}
Two Z^{+}

Contribution	Fit fraction	Signif.	Fit fraction	Signif.
$Z_{(1)}^{+}$	$\left(33.1_{-5.8}^{+8.7}\right) \%$	10.7σ	$\left(8.0_{-2.2}^{+3.8}\right) \%$	5.7σ
Z_{2}^{+}	-	-	$\left(10.4_{-2.3}^{+6.1}\right) \%$	5.7σ
κ	$(1.9 \pm 1.8) \%$	2.1σ	$(3.6 \pm 2.6) \%$	3.5σ
$K^{*}(892)$	$(28.5 \pm 2.1) \%$	10.6σ	$(30.1 \pm 2.3) \%$	9.8σ
$K^{*}(1410)$	$(3.6 \pm 4.4) \%$	1.3σ	$(4.4 \pm 4.3) \%$	2.0σ
$K_{0}^{*}(1430)$	$(22.4 \pm 5.8) \%$	3.4σ	$(18.6 \pm 5.0) \%$	4.5σ
$K_{2}^{*}(1430)$	$(8.4 \pm 2.7) \%$	5.2σ	$(6.1 \pm 2.9) \%$	5.4σ
$K^{*}(1680)$	$(5.2 \pm 3.7) \%$	2.2σ	$(4.4 \pm 3.1) \%$	2.4σ
$K_{3}^{*}(1780)$	$(7.4 \pm 3.0) \%$	3.6σ	$(7.2 \pm 2.9) \%$	3.8σ
	110.5%		92.8%	

$\overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \chi_{\mathrm{c} 1}:(8)$ systematics

BELLE-CONF-0848/arXiv:0806.4098 [hep-ex] available now

	Model	One Z^{+}	2-vs-1 Z^{+}	Two Z^{+}
1	default model	10.7σ	5.7σ	13.2σ
2	no κ	15.6σ	5.0σ	16.6 σ
3	no $K^{*}(1410)$	13.4σ	5.4σ	14.8σ
4	no $K_{0}^{*}(1430)$	10.4σ	5.2σ	14.4σ
5	no $K^{*}(1680)$	13.3σ	5.6σ	14.8σ
6	no $K_{3}^{*}(1780)$	12.9σ	5.6σ	14.4σ
7	add $\chi_{c 1} \mathrm{~K}^{-}$non-res.	9.0σ	5.3σ	10.3σ
8	add $\chi_{c 1} \mathrm{~K}^{-}$non-res., no $K^{*}(1410)$	11.3σ	5.1σ	13.5σ
9	add $\chi_{c 1} \mathrm{~K}^{-}$non-res., no $K^{*}(1680)$	11.4σ	5.3σ	13.7σ
10	add $\chi_{c 1} \mathrm{~K}^{-}$non-res., no $K_{3}^{*}(1780)$	10.8σ	5.4σ	13.2 σ
11	add $\chi_{c 1} \mathrm{~K}^{-}$non-res., release κ constraints	9.5σ	5.3σ	10.7σ
12	add $\chi_{c 1} \mathrm{~K}^{-}$non-res., new $K^{*}(\mathrm{~J}=1)$	7.7σ	5.4σ	9.2σ
13	add $\chi_{c 1} \mathrm{~K}^{-}$non-res., new $K^{*}(\mathrm{~J}=2)$	6.2σ	5.6σ	8.1σ
14	LASS parametrization of S-wave	13.1σ	5.7σ	1406

$\overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \chi_{\mathrm{c} 1}$: (9) summary of Dalitz analysis

 BELLE-CONF-0848/arXiv:0806.4098 [hep-ex] available now- very poor fit using known states

$\overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \chi_{\mathrm{c} 1}$: (9) summary of Dalitz analysis

 BELLE-CONF-0848/arXiv:0806.4098 [hep-ex] available now- very poor fit using known states
- exotic $Z^{+} \rightarrow \pi^{+} \chi_{c 1}$ needed

$\overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \chi_{\mathrm{c} 1}$: (9) summary of Dalitz analysis

 BELLE-CONF-0848/arXiv:0806.4098 [hep-ex] available now- very poor fit using known states
- exotic $Z^{+} \rightarrow \pi^{+} \chi_{c 1}$ needed
- $>6 \sigma$ even under speculative changes to the fitting model

$\overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \chi_{\mathrm{c} 1}:(9)$ summary of Dalitz analysis

 BELLE-CONF-0848/arXiv:0806.4098 [hep-ex] available now- very poor fit using known states
- exotic $Z^{+} \rightarrow \pi^{+} \chi_{c 1}$ needed
- $>6 \sigma$ even under speculative changes to the fitting model
- two terms preferred at $>5 \sigma$

	Z_{1}^{+}	Z_{2}^{+}
M/MeV	$4051 \pm 14_{-41}^{+20}$	$4248{ }_{-29}^{+44+35}$
「/MeV	82_{-17}^{+21+27}	$177_{-39}^{+54}+316$
$\mathcal{B}_{\overline{\mathrm{B}} 0} \times \mathcal{B}_{Z^{+}}$	$\left(3.1_{-0.9}^{+1.5-1.7}\right)$	$\left(4.0_{-0.9}^{+2.0 .5}{ }^{+2.7}\right)$
	$\times 10^{-5}$	$\times 10^{-5}$
[cf. $\mathcal{B} \times \mathcal{B}$ w	$X(3872), Y(3$	40), $Z(4430)$

$\overline{\mathrm{B}}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \chi_{\mathrm{c} 1}:(9)$ summary of Dalitz analysis

 BELLE-CONF-0848/arXiv:0806.4098 [hep-ex] available now- very poor fit using known states
- exotic $Z^{+} \rightarrow \pi^{+} \chi_{c 1}$ needed
- $>6 \sigma$ even under speculative changes to the fitting model
- two terms preferred at $>5 \sigma$

	Z_{1}^{+}	Z_{2}^{+}
M / MeV	$4051 \pm 14_{-41}^{+20}$	$4248_{-29}^{+44+185}$
Γ / MeV	$82_{-17-220}^{+21+47}$	177_{-39}^{+54+61}
$\mathcal{B}_{\overline{\mathrm{B}} 0} \times \mathcal{B}_{Z^{+}}$	$\left(3.1_{-0.9}^{+1.5-1.7}\right)$	$\left(4.0_{-0.9-0.5}^{+2.3+19.7}\right)$
$\times 10^{-5}$		
[cf. $\mathcal{B} \times \mathcal{B}$ with $\left.X(3872), Y(3940), Z(4430)^{+}\right]$		

- Z_{1}^{+}, Z_{2}^{+}join $Z(4430)^{+}$as candidate hidden-charm exotics

